

LEARN TO CODE HTML, CSS & JAVASCRIPT

 I

LEARN TO

CODE

Learn HTML, CSS & JavaScript

& build a website, app and game

Written by

Garry Owen

LEARN TO CODE HTML, CSS & JAVASCRIPT

 II

LEARN TO CODE HTML, CSS & JAVASCRIPT

 III

CONTENTS

INTRODUCTION ... 2

WHAT WILL YOU NEED? ... 2

ABOUT THE AUTHOR ... 2

CONVENTION USED IN THIS BOOK ... 5

LESSON OBJECTIVE: .. 5

WHAT IS THE ‘HELLO, WORLD’ PROGRAM?... 5

STEP❶ - CONVENTIONS EXAMPLE ... 5

HELLO, WORLD! .. 8

LESSON OBJECTIVE: .. 8

WHAT IS THE ‘HELLO, WORLD’ PROGRAM?... 8

STEP❶ - CHOOSE A SUITABLE CODING EDITOR ... 8

STEP❷ - SET-UP YOUR FILE STRUCTURE ... 8

STEP❸ - DEFINE YOUR HTML STRUCTURE ... 9

STEP❹ - EXPLORING THE USE OF CASCADING STYLE SHEETS 11

WHAT ARE CASCADING STYLE SHEETS? ... 11

STEP❺- ADD MULTI-LANGUAGE SALUTATIONS ... 14

STEP❻ - JAVASCRIPT FUNCTIONS .. 16

WHAT IS A JAVASCRIPT FUNCTION? .. 16

STEP❼ - ADDING IMAGES ... 22

FAST ACCESS WEB MENU .. 26

LESSON OBJECTIVE: .. 26

STEP❶ - INFORMATION GATHERING .. 26

STEP❷ - ARRANGING THE FILE STRUCTURE .. 26

STEP❸ - DOWNLOADING AND PREPARING IMAGES .. 27

STEP❹ - IMPLEMENTING THE HTML FILE STRUCTURE .. 28

STEP❺ - PAGE LAYOUT DESIGN .. 29

LEARN TO CODE HTML, CSS & JAVASCRIPT

 IV

STEP❻ - IMPLEMENTING THE PAGE LAYOUT WITH HTML 29

STEP❼ - CHOOSING THE COLOUR DESIGN AND IMPLEMENTING THE CSS 35

STEP❽ - ADDING WELL-FORMED IMAGE ELEMENTS .. 41

STEP❾ - ADDING STYLES TO THE IMAGES .. 44

STEP❿ - IMPLEMENTING WELL-FORMED HYPERLINKS ... 46

CREATING A WEB APP ... 52

WHAT IS A WEB APP AND HOW IS IT DIFFERENT FROM A WEBSITE? 52

LESSON OBJECTIVE: .. 53

STEP❶ - SETTING UP YOUR FILE STRUCTURE ... 53

WHAT IS A JSON FILE? .. 54

WHY USE JSON? .. 55

STEP❷ - IMPLEMENTING THE HTML STRUCTURE ... 57

STEP❸ - BUILDING THE QUESTION BANK JSON FILE 62

STEP❹ - ADDING SOME STYLE .. 64

STEP❺ - BUILDING THE JAVASCRIPT ENGINE .. 74

STEP❻ - THE BUILD QUIZ FUNCTION ... 77

WHAT IS AN ARRAY? .. 85

STEP❼ - THE SHOW RESULTS FUNCTION ... 89

STEP❽ - SHOW EACH QUESTION ON ITS OWN PAGE .. 92

STEP❾ - ADDING A COUNTDOWN TIMER ... 96

STEP❿ - ADDING USER ADMINISTRATION FUNCTIONS....................................... 108

HOW TO CONSTRUCT OUR HTML FORM .. 111

INPUT TYPE FORM ATTRIBUTES .. 113

OTHER FORM ATTRIBUTES ... 114

STYLING OUR HTML FORM ... 121

GET DATA FROM THE HTML FORM AND ADD IT TO THE JSON FILE 123

WHAT IS LOCAL STORAGE? ... 126

LEARN TO CODE HTML, CSS & JAVASCRIPT

 V

CONSTRUCTING THE ‘REMOVE QUESTIONS’ FORM MARK-UP 128

STYLING THE ‘REMOVE QUESTIONS’ FORM .. 131

UPDATING QUIZ JAVASCRIPT FILE TO ACCOMMODATE LOCAL STORAGE 132

BUILDING THE JAVASCRIPT TO DELETE QUESTIONS ... 133

HOW TO SET UP NAVIGATION BETWEEN PAGES ... 140

STYLING OUR SIMPLE NAVIGATION MENU ... 143

JAVASCRIPT TO HANDLE SIMPLE NAVIGATION .. 145

CREATING A PLATFORM GAME .. 149

WHAT IS A PLATFORM GAME? .. 149

LESSON OBJECTIVE: .. 149

STEP❶ - SETTING UP YOUR FILE STRUCTURE ... 150

STEP❷ - CREATING THE HTML FILE FOR OUR PLATFORM GAME 151

STEP❸ - CREATING THE CSS FOR OUR PLATFORM GAME 152

STEP❹ - CREATING ASSETS FOR OUR PLATFORM GAME 154

STEP❺ - CREATE AND REFERENCE TILES FOR BUILDING OUR TILE MAPS 155

STEP❻ - CREATE AND REFERENCE SPRITE OBJECTS ... 158

STEP❻ - CREATE THE MAIN JAVASCRIPT FILE TO TIE IT ALL TOGETHER 159

STEP❼ - HANDLING THE START / TITLE SCREEN .. 161

STEP❽ - BUILDING OUR FIRST TILE MAP .. 164

STEP❾ - DESIGNING TILE MAPS... 168

STEP❿ - COLLISION DETECTION ... 175

WHAT IS AN OPERATOR? ... 180

STEP⓫ - ADDING ENEMIES - BOTH STATIC AND MOVING 188

GAME OVER .. 197

STEP⓬ - ADDING COLLECTABLES .. 198

SPRITE SHEETS ... 199

STEP⓭ - THE GAME MONITOR .. 213

LEARN TO CODE HTML, CSS & JAVASCRIPT

 VI

STEP⓮ - ADDING MORE GAME SCREENS ... 216

STEP⓯ - ADDING SOUND (SFX) AND MUSIC ... 223

STEP⓰ - CONCLUSION .. 228

DEPLOYING YOUR PROJECTS ONTO A WEB SERVER ... 229

FILE TRANSFER PROTOCOL .. 229

WHAT IS SSL? ... 232

WHAT IS SSH?... 232

WHERE TO GO FROM HERE ... 233

CHECK OUT SOME OF MY OTHER PUBLICATIONS (YES I WRITE FICTION TOO!) ... 234

INDEX ... 236

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 1 ~

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 2 ~

INTRODUCTION

Hello web developer!

Sit back, strap yourself in and get ready for a fantastic learning

experience. This book will take you through easy-to-follow, step-by-step

lessons and give you all of the guidance you need to write your first

program with some flair, make a useful website that will give you fast

access to all of your favourite places online, make a quiz app that fits

smartly onto your mobile phone and finally make a platform game. Top-

notch!

This book is designed for you to be able to code everything and run it in a

browser, and program it locally on your PC or Mac. In fact, by design

HTML, CSS, and JavaScript can be run in any browser and coded in almost

any text editor.

WHAT WILL YOU NEED?

Everything you need is available for free on Windows and Mac. Better

than that, what you need is built-in, if that’s the way you decide to go.

However, I would recommend using the Google Chrome browser (this is

not essential, you can use almost any browser), Visual Studio Code

(…again not essential, you can use Notepad or similar if you wish) and

lastly a hint of patience as you learn.

ABOUT THE AUTHOR

I have been coding in various languages for almost four decades. I work as

an IT Director and have been employed in Director level roles for almost a

decade.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 3 ~

One of the first lessons I ever learned as a programmer was ‘Top-Down

Design’ and ‘Step-wise Refinement’. In simple terms, this means breaking

down a problem into ordered steps and then refining or optimising each

step and where necessary breaking those steps down even further.

Let’s take an everyday life example.

Make a cup of tea

1. Fill the kettle with water

2. Turn on the kettle

3. Add 2 tea bags to a tea pot

4. When the kettle has finished boiling pour over 1.5

litres of hot water

5. Stir the tea pot

6. Put the lid onto the tea pot and allow to brew for 3

minutes

7. Check the tea, if it is dark brown pour into a mug,

filling to about ¾ full

8. Add milk until it appears an even caramel colour

9. Add 1 tea spoon of sugar and stir

Okay, so each step here can be further broken down, but that is only

necessary if you need further clarification to understand the steps. That is

the same with computer programming and indeed any other problem

that you might face in your life.

For someone with prior knowledge, the instruction, ‘make a cup of tea’ is

more than adequate. Shy of a please and thank you of course!

You only need to break down a problem far enough for you to be able to

understand it. When you need to tackle a problem I highly recommend

this philosophy.

Let’s have some fun….

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 4 ~

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 5 ~

CONVENTION USED IN THIS BOOK

Each lesson is laid out in easy-to-follow steps. See the example below:-

LESSON OBJECTIVE:

Coding the ‘Hello, World’ program with a little flair.

WHAT IS THE ‘HELLO, WORLD’ PROGRAM?

Since the first “Hello, World!” program was written in 1972, it's become a

tradition amongst computer science teachers and professors to introduce

the topic of programming with this example. As a result, “Hello, World!” is

often the first program most people write. However, we are not going to

write any old ‘Hello World’ program. We’re going to do it ‘The Right Way!’

and in style.

STEP❶ - CONVENTIONS EXAMPLE

Open a suitable coding editor. This can be Notepad, Notepad++, Visual

Studio Code (recommended), or similar….

Important information will be highlighted with this icon.

Tips will be highlighted with this icon.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 6 ~

Please note! To help you along the way, extra

information is shown in information boxes,

which relate to parts of the current lesson

content. An example of this is shown here.

All URL’s will be shown in blue, as below:-

https://google.com

All programming code will be shown with the

text ‘Syntax Highlighted’, as shown in the

example below.

<!DOCTYPE html>

<html>

<head>

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <!-- Bootstrap CDN CSS -->

 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstra

p/3.4.1/css/bootstrap.min.css">

Syntax highlighting is a feature of text editors that are used for

programming, scripting, or mark-up languages. The feature

displays text, especially source code, in different colours and

fonts according to the category of terms.

URL: Uniform Resource Locator,

otherwise known as a web

address

The first part of the URL is called

a protocol identifier (HTTPS) and

it indicates what protocol to use,

and the second part is called a

resource name (google.com)

and it specifies the IP address or

the domain name where the

resource is located.

https://google.com/

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 7 ~

Due to page width constraints, the code is

also word-wrapped.

Please note all code for each lesson is

available via the support website, in easy to

download files. Direct links are available at

the end of each lesson.

 Word Wrapped:

A line of text that requires more

space is wrapped around and

displayed on additional lines

below.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 8 ~

HELLO, WORLD!

LESSON OBJECTIVE:

Coding the ‘Hello, World’ program with flair.

WHAT IS THE ‘HELLO, WORLD’ PROGRAM?

Since the first “Hello, World!” program was written in 1972, it's become a

tradition amongst computer science teachers and professors to introduce

the topic of programming with this example. As a result, “Hello, World!” is

often the first program most people write. However, we are not going to

write any old ‘Hello World’ program. We’re going to do it ‘The Right Way!’

and in style.

STEP❶ - CHOOSE A SUITABLE CODING EDITOR

Open a suitable coding editor. This can be Notepad, Notepad++, Visual

Studio Code (recommended), or similar.

STEP❷ - SET-UP YOUR FILE STRUCTURE

Make a new folder on your desktop and call it ‘hello world’.

Within it, make another folder named ‘css’, a folder named ‘js’, and

finally, a folder named ‘images’. Next, open your chosen coding editor,

make a new file and save your empty file as ‘hello.html’, within your ‘hello

world’ folder.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 9 ~

If you have followed these steps correctly you should have the following

file structure - a folder called ‘hello world’ and one file (hello.html) and

three folders:

You’re doing great!

STEP❸ - DEFINE YOUR HTML STRUCTURE

In the most simple of descriptions, an HTML layout can be recognised as

shown below. Enter the code exactly as you see it into your ‘hello.html’

file and hit Save in the File menu or press CTRL and S.

To save more easily, use shortcut keys -

CTRL and S, for Windows or Command and S, for Mac.

<html>

 <head>

 </head>

 <body>

 </body>

</html>

To tell the browser we want to display an HTML page, we begin with the

<html> opening mark-up.

Next, we have the <head>. Within the opening and closing <head> and

</head> tags we put links to external files, such as CSS and JavaScript, as

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 10 ~

well as this we can include meta data and incorporate page styles if we

desire, plus much more.

Lastly, we have the <body>. Within the <body> and </body> tags we put

the main content of the webpage.

Next, update your ‘hello.html’ file, as below:

<html>

<head>

<title>Hello</title>

<link rel="stylesheet" href="css/app.css">

</head>

<body>

<h1>Hello, World!</h1>

</body>

</html>

OK, you’ll already recognise the HTML file structure. So, what else do we

have?

<title>Hello</title>

This sets the page title, which can be viewed on the page tab of your

browser.

<link rel="stylesheet" href="css/app.css">

This connects to an external style sheet, which can be found in the ‘css’

folder. The external style sheet provides a list of styling rules for your

HTML page.

NB! Your code will NOT be syntax highlighted if you are using Notepad.

Instead, it will be displayed as plain black text.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 11 ~

You can now double click on your ‘hello.html’ file to open it in your

default browser. You’ll get a white page with the <h1> title ‘Hello, World!’

displayed in your browser’s default font. So far, it’s plain and frankly quite

dull, but we’re far from done yet though.

STEP❹ - EXPLORING THE USE OF CASCADING STYLE SHEETS

Next, we’ll explore the use of Cascading Style Sheets with our HTML mark-

up.

WHAT ARE CASCADING STYLE SHEETS ?

Cascading Style Sheets are used to format web pages. For example, CSS

can be used to define colour, width, height, margins, opacity, padding,

etc. There are three ways that you can implement CSS: internal, external,

and inline styles. All of these will be explained in detail through the book.

How does CSS (Cascading Style Sheets) work with our HTML mark-up?

As we said above, CSS provides a set of rules for formatting the layout and

styling of an HTML page. These rules are applied using either id, class, or

keyword selector. A CSS selector is the first part of a CSS Rule. It is a

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 12 ~

pattern of elements and other terms that tell the browser which HTML

elements should be selected to have the CSS property values inside the

rule applied to them. If that sounds like gobbledygook, don’t worry too

much right now. It will all become clear.

Now make a new file called app.css and save it in the ‘css’ folder. Then

add the following code:

html, body {

 margin: 0px;

 background-image: linear-gradient(to bottom right, #95d9f9, #ae4bc3);

}

h1 {

 color: #1b95cd;

 font-family: tahoma, sans-serif;

}

Save the file. (CTRL + S)

At the moment, there are only two elements on our webpage. That is the

h1 heading and the html / body of the page. If you look at the web page

now and refresh it you will see that these two elements have had styling

rules applied to them.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 13 ~

The background and font have been coloured and the font has been

changed. Let’s take a closer look.

Firstly, we can see that the margin is set to 0 pixels. This command means

all margins are set to zero. Margins can be set separately using margin-

left, margin-right, margin-top, and margin-bottom or as a combined

margin command. When used in this way, you can still set the

independent values, like so:

margin: 0px 0px 0px 0px;

Where the first 0px is for the top, the next for the right, the next for the

bottom, and the last one is for the left. (TRBL).

In other words, the frame will be rendered into the user's view tight into

the corners of the screen.

Next, we style the body element with a linear gradient. It is set to the

bottom right, which means the gradient will render from the top left of

the page to the bottom right. After the comma, we have #95d9f9,

which is a hexadecimal code for a shade of light blue and finally, we have

#ae4bc3, which is a hexadecimal code for a shade of purple.

Next, we styled the h1 tag. This means anything on the page between an

<h1> and </h1> will be styled with the rules set.

Firstly we set the font colour. Notice color is spelled in the American way

in code. The colour is set using a deeper blue with the hex code:

#1b95cd;

Colours can be set in one of three ways. One as a hexadecimal

code, as demonstrated, two as an RGB code, and third, some

colours can be set by name. For instance, red, blue, green. We’ll

be using hex codes and RGB and RGBA codes throughout this book

because they give greater control over the output.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 14 ~

Secondly, we changed the font, from the default to Tahoma, sans-serif.

Most people will be familiar with this font from usage in word processing

applications etc. The sans-serif simply means no serif. A serif is the

decorative edges some fonts have. The slight projection finishes off the

stroke of a letter in certain typefaces. Like Times New Roman, as an

example.

OK, let’s take this up a few notches.

STEP❺- ADD MULTI-LANGUAGE SALUTATIONS

As a website is intended to be available the world over, let’s say ‘Hello’ in

a few languages to make it more cultured and diverse.

Edit your ‘hello.html’ file and add the following code.

<h1 class="GB"> Hello </h1>

<h1 class="ES"> Hola </h1>

<h1 class="FR"> Bonjour </h1>

<h1 class="IT"> Salve </h1>

<h1 class="GE"> Guten tag </h1>

<h1 class="JP"> Konnichiwa </h1>

<h1 class="RU"> Zdravstvuyte </h1>

<h1 class="KO"> Anyoung Haseyo </h1>

<h1 class="PO"> Dzien Dobry </h1>

<h1 class="HI"> Namaste </h1>

<h1 class="HE"> Shalom </h1>

<h1 class="SW"> God Dag </h1>

Replacing the:

<h1>Hello World!</h1>

Line of code.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 15 ~

So far, if you have followed the instructions correctly, refreshing your

browser should render the following result:

There is only one real difference here. That is the addition of the classes

inside each of the <h1> tags. Presently they have no effect and each of

the <h1> tags is simply following the existing rules we made for the <h1>.

Next, we are going to spice things up a bit more by adding some

JavaScript. JavaScript can utilise classes, keywords, and ids in much the

same way as CSS.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 16 ~

STEP❻ - JAVASCRIPT FUNCTIONS

Using JavaScript we can update our CSS script. To do so we are going to
make a JavaScript function.

WHAT IS A JAVASCRIPT FUNCTION?

A JavaScript function is a block of code designed to perform a particular

task. A JavaScript function is executed when it is invoked (called).

Make a new file called app.js and save it in the ‘js’ folder. Then enter the
following code.

//Generate salutations

//t - top, l - left, c - colour, s - font-size, z - z-index, id - class

function sals(t, l, c, s, z, id){

 var sal = document.getElementsByClassName(id);

 sal[0].style.top = t;

 sal[0].style.left = l;

 sal[0].style.color = c;

 sal[0].style.fontSize = s;

 sal[0].style.zindex = z;

}

sals('5%', '50%', '#1b95cd', '250px', '20', "GB");

sals('1%', '10%', 'red', '150px', '19', "ES");

sals('15%', '30%', 'blue', '100px', '18', "FR");

sals('35%', '60%', 'green', '170px', '17', "IT");

sals('54%', '20%', 'orange', '170px', '16', "GE");

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 17 ~

sals('54%', '35%', 'yellow', '100px', '15', "JP");

sals('10%', '55%', 'grey', '80px', '14', "RU");

sals('27%', '21%', 'lightgrey', '100px', '13', "KO");

sals('37%', '31%', '#333', '65px', '12', "PO");

sals('67%', '51%', 'pink', '125px', '11', "HI");

sals('47%', '11%', 'lightblue', '115px', '10', "HE");

sals('27%', '31%', 'lightgreen', '185px', '9', "SW");

We’ll need to connect this script to our template in the ‘hello.html’ file.
Edit it as follows:

Just inside the </body> tag add the following line of code:

<script src="js/app.js"></script>

So let’s talk a little about what the JavaScript code is doing.

//Generate salutations

//t - top, l - left, c - colour, s - font-size, z - z-index, id – class

This part of the code is comments to help you to remember the purpose
of the code if you ever revisit it. You can use the // double forward slashes
in front of any text in JS to comment out a single line, as well as /* as the
opening and */ as the ending to comment over many lines, like this:

/* Generate salutations

t - top, l - left, c - colour, s - font-size, z - z-index, id - class */

This second style of commenting can also be used in CSS for commenting
your code. This is a highly recommended practice. You should always

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 18 ~

comment your code. It is particularly useful if you are collaborating on a
project with other developers.

I have noted here what each of the function parameters represents. We
can pass data to each of the parameters to use inside our function.

Next, we have the sals (short for salutations) function itself.

function sals(t, l, c, s, z, id){

 var sal = document.getElementsByClassName(id);

 sal[0].style.top = t;

 sal[0].style.left = l;

 sal[0].style.color = c;

 sal[0].style.fontSize = s;

 sal[0].style.zindex = z;

}

Okay, so the first line here opens the function which we’ve named sals
and passed the parameters t, l, c, s, z, and id. That’s all done with the one
line of code.

function sals(t, l, c, s, z, id){

And at the end of the function, we close it with the curly brace.

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 19 ~

Inside the function, our first line of code makes
a variable called sal. Our variable holds an id
tag which is associated with our class name
given in our ‘hello.html’ file.

<h1 class="GB"> Hello </h1>

Here you can see the first of the class name
associations, whereby the class=”GB” part of the code is used to attribute
our CSS and JS code to our HTML mark-up.

So essentially this line of code is saying connect to the class given by the
id parameter.

The next line of code changes the top CSS style to a new given value in the
parameter t.

sal[0].style.top = t;

Each of the remaining lines of code inside the function’s open and close
curly braces { and } changes a specific style for the given parameter, as
our comments suggest.

t – top – How many pixels from the top of the screen

l – left – How many pixels from the left of the screen

c – colour – What colour to display the text in

s - font-size – The desired font size

z - z-index – Overlay level – 1 appears in front of 0

id – class – Our chosen class name

Variable:

A variable is something that can

be changed. In computer

programming we use variables

to store information that might

change and can be used later in

our program.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 20 ~

That brings us neatly on to our set of function calls. Without calling the
function the code within it will not run. Each of our function calls does the
same thing, with exception of changing the given parameters. Let’s
examine the first function call to get a better idea.

sals('5%', '50%', '#1b95cd', '250px', '20', "GB");

Okay, so firstly to call a function we need the following code:

sals();

This will call the function called sals but passes no parameters. In our
case, it would throw an error that can be viewed in your browser console,
but otherwise, it would appear to do nothing because we need to pass
our parameters for our code to do what we want to achieve.

When we call it correctly like this:

sals('5%', '50%', '#1b95cd', '250px', '20', "GB");

sals(); calls the function

‘5%’ represents the t parameter

‘50%’ represents the l parameter

‘#1b95cd’ represents the c parameter

‘250px’ represents the s parameter

‘20’ represents the z parameter

‘GB’ represents the id parameter

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 21 ~

Therefore, using our function allows us to change all of these parameters
in just one line of code, per salutation.

Add the following to the h1 rules in our CSS file, and save it (CTRL + S):

 opacity: 60%;

 position: absolute;

opacity: 60%; does what it says on the tin. It makes each of the
salutations slightly transparent, 60% opaque, or 40% transparent,
depending on what perspective you choose to view it from. Opacity can
also be set with decimals. 1 being equal to 100% opaque, while 0 is
invisible. Opacity can be set in increments between 0.0 and 1 with lower
values being more transparent.

position: absolute; allows the top and left parameters in our
JavaScript function to update our CSS position property. There are seven
properties for positioning in CSS. Namely, static (this is the default value),
absolute, fixed, relative, sticky, initial, and inherit. For now, all you need
to know is that position: absolute allows us to position elements on the
screen in exact locations, based on top and left coordinates.

Now refresh
your browser
and take a look
at the results.

It’s starting to
look more
interesting!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 22 ~

STEP❼ - ADDING IMAGES

Our initial program said ‘Hello, World’, so let’s do something with the
world part. That’s where our images folder comes in.

Okay, download the world.gif file from:

https://wddtrw.co.uk/resources/learntocode/images/world.gif

Save the image into your images folder within your file structure. To do
so, go to the given link address, right-click on the spinning globe and
choose ‘Save As’, from the context menu. Then choose the images folder
within your file structure and hit the save button.

Note! If you decide to change the file name, you’ll also have to
change it in your code. It is named ‘world.gif’, so the image must
be referenced as ‘images/world.gif’. It is crucial that these
match, otherwise your image won’t display.

Next, edit your ‘hello.html’ file and add the following line of code just
below your opening <body> tag, as shown below. Then save your file.

<body> ◄ Don’t add this.

<div class="globe"></div>

https://wddtrw.co.uk/resources/learntocode/images/world.gif

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 23 ~

Here we have placed our image inside a
<div></div> division. Think of this as a division
of the visible screen. We have given the <div>
the class of globe. We will use this to place the
div and its contents where we want it to appear
on the screen. We have also given our image a
class. This is so we can control how we want our
image to display.

Next, open the app.css file and add the
following lines of code.

Firstly inside the h1 { } add the following line of
code:

 -webkit-text-stroke: 2px white;

This will add a 2px or 2-pixel wide stroke (outline) around the text. This
was added to make the words stand out better from the background.

Next, add the following two classes to the
bottom of the app.css file:

.globe {

 text-align: center;

 margin-top: 150px;

}

.globe_image {

 height: 70vh;

}

<div>:

The div tag is known as the

Division tag. The div tag is used

in HTML to make divisions of

content in the web page like

(text, images, header, footer,

navigation bar, etc). ... It is used

to group various tags of HTML so

that sections can be created and

styles can be applied to them.

Pixel:

A pixel is the smallest unit of a

digital image or graphic that can

be displayed and represented on

a digital display device.

A pixel is also known as a picture

element (pix = picture, el =

element)..

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 24 ~

The globe class has been given 2 rules to follow. Firstly it has been aligned
to the centre of the page and secondly, it has a margin of 150 pixels set
from the top of the visible screen.

The globe image class has been given one rule. This has set the height of
our globe to 70vh or 70 percent of the view height.

Save the file and preview your results. If you have done everything
correctly you should see the following with a spinning animated globe in
the background of your display.

Hey, what a great start. Well done for getting this far!!

Next, we’re going to develop something useful. That is the point of

coding. Making your life or others’ lives easier or more entertaining.

All files and images associated with this exercise can be found at:

https://wddtrw.co.uk/resources/learntocode/helloworld.zip

https://wddtrw.co.uk/resources/learntocode/helloworld.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 25 ~

Make yourself a well-deserved cuppa and let’s move on!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 26 ~

FAST ACCESS WEB MENU

LESSON OBJECTIVE:

Design and develop a well-structured webpage incorporating a fast access

menu for all of your favourite websites.

STEP❶ - INFORMATION GATHERING

The first part of any good design is information gathering. This project is

going to be personal to you, so although your result will follow the same

logic for the version in the book, yours will look a little different.

Firstly, you need to choose up to 12 websites that you visit the most

frequently. This can be any website. Take a look at my list below for some

ideas.

Santander Online banking

YouTube

AOL Email

PayPal

Google Maps

Facebook

Amazon

Zoom

LinkedIn

Twitter

STEP❷ - ARRANGING THE FILE STRUCTURE

Next, we need to construct the file structure. For this project, it’s a little

simpler than the last. Create a new folder on your desktop called

‘website’. Open it and within it create a folder called ‘css’ and another

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 27 ~

called ‘images’. Finally, open your chosen coding editor and make a new

file. Save it as ‘web_menu.html’.

If you have followed the instructions correctly, you should have the

following file structure:

STEP❸ - DOWNLOADING AND PREPARING IMAGES

Next, for each of your chosen websites do a google search and find

suitable images to represent each of them. Choose clear images. Don’t

worry too much about the size right now because I’m going to explain

how you can edit and optimise your images.

Using the same method we used to save the ‘world.gif’ image, search

google images for suitable images and right-click, choose ‘Save As’ from

the context menu, and save each of your images into your images folder.

This time, I recommend that you change the names of the images, for the

sake of clarity and ease of use. For instance, in my case, I’ve named my

first image ‘santander.jpg’. There are many different file formats for

images, therefore, the one you’ve chosen might not be a jpeg. If that is

the case don’t worry, just name it ‘[your filename].[your extension]’. We

can just change the filenames and extensions in our code, to suit.

So I have 10 websites and therefore I also have 10 images to represent

each of those websites saved into my images folder. If you have done this

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 28 ~

correctly, you should have similar to the following in your images folder,

obviously aside from potential different filenames and extensions.

Notice I chose all rectangular landscape images. This will make my result

more uniform. This is a personal choice, it doesn’t really matter. All that

matters is that you have an image to represent each of your chosen

websites.

STEP❹ - IMPLEMENTING THE HTML FILE STRUCTURE

If it’s not already, open ‘website.html’ in your chosen coding editor. As

with the last exercise, firstly we need to implement our file structure, as

shown below.

<html>

 <head>

 </head>

 <body>

 </body>

</html>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 29 ~

STEP❺ - PAGE LAYOUT DESIGN

At this stage, we need to think about our page layout. It is a good idea to

make a block diagram of this, to represent what you want to achieve with

your CSS. In my example, I have 10 websites, therefore I have decided on

the following page structure:

STEP❻ - IMPLEMENTING THE PAGE LAYOUT WITH HTML

Next, we’ll update ‘website.html’ with a title, a link for the CSS file we’ll

create, and explore how we are going to implement the page structure for

our web menu.

Some of this code you have seen before in the last exercise, so you should

already be getting a little familiar and recognising various keywords and

mark-up.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 30 ~

In the <head></head> part of your code add the following:

 <head>

 <title>Fast Access Web Menu</title>

 <link rel="stylesheet" href="css/app.css">

 </head>

Then, in the <body><body>, add the following:

 <body>

 <header>

 <h1>Fast Access Web Menu</h1>

 </header>

 <div class="wrapper">

 <div class="">

 </div>

 </div>

 <footer>

 <p>© Copyright [Your Name Here] 2022</p>

 </footer>

 </body>

Okay, let’s examine what we have so far. We have a section named

<header></header>. The <header> element represents a container for

introductory content or a set of navigational links.

A <header> element typically contains:

 one or more heading elements (<h1> - <h6>)

 logo or icon

 author information

 You can have several <header> elements in one HTML document.

However, <header> cannot be placed within a <footer>,

<address> or another <header> element.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 31 ~

Next, we have a <div> with the class ‘wrapper’. This will be used to

enclose all of the page links into a division (a page section).

The next part is where the main work gets done.

 <div class="">

 </div>

Each website link we add will have this code replicated. I have 10 web

pages, therefore I will need to reproduce this 10 times. Once for each of

my page links. You will notice that I haven’t named the class or added any

details to the href, alt title, or src tags yet. That is because for each link

that information will be different.

Let’s take a deeper look.

We have a <div> with a class. The class will be named appropriately for

each page link so that it can be used in the CSS. You will already be

familiar with this code if you’ve completed the last exercise.

Next, we have an <a> anchor tag, otherwise known as a hyperlink or

link. The href carries reference information where we want the user to be

directed when the link is clicked. Hyperlinks can use internal and external

URL’s or even an anchor to a particular section of the same web page. We

will be using external URL’s for third-party websites in our example. We

will explore other options with this later in the book.

Next, we have alt=””, you will notice that this is also shown within the

image tag. This is for alternative text. Or in other words, text that is shown

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 32 ~

to the user if, for some reason, the information or image cannot be

displayed. This can occur when there is a slow connection or an error with

the source file, as an example. Alt tags are also read by screen readers.

With hyperlinks, it is good practice to describe where the link directs to.

They are not strictly necessary, but it is a highly recommended best

practice and forms part of good search engine optimisation (SEO).

The title=””, similar to the alt tag, should carry relevant title information.

This is displayed when hovered with a mouse. A hyperlink and image

carrying these tags are recognised as being well-formed.

Also, we have a class=””, in our image tag. This will be used to style our

images accordingly.

Notice that the is within the
<a>. This can be text or, as we’ve done here, an image. It makes the
image clickable. When clicked the user will be redirected to the given URL.

Finally, we have the footer. The <footer> tag defines a footer for a

document or section.

A <footer> element typically contains:

 author information

 copyright information

 contact information

 sitemap

 back to the top links

 related documents

You can have several <footer> elements in one document.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 33 ~

We are keeping things simple and just adding copyright information.

Update with your details to suit.

Taking all of that on board, update your code accordingly. See my

example, below:

<html>

 <head>

 <title>Fast Access Web Menu</title>

 <link rel="stylesheet" href="css/app.css">

 </head>

 <body>

 <header>

 <h1>Fast Access Web Menu</h1>

 </header>

 <div class="wrapper">

 <div class="page">

 </div>

 <div class="page">

 </div>

 <div class="page">

 </div>

 <div class="page">

 </div>

 <div class="page">

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 34 ~

 </div>

 <div class="page">

 </div>

 <div class="page">

 </div>

 <div class="page">

 </div>

 <div class="page">

 </div>

 <div class="page">

 </div>

 </div>

 <footer>

 <p>© Copyright Garry Owen 2022</p>

 </footer>

 </body>

</html>

Notice how we now have 10 divs with the class name page, 10 links, and

10 images within those links. In this example, I have chosen to style my

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 35 ~

page links the same, it can easily be changed to individual styles, if you

prefer.

Okay, so with that explanation absorbed, let’s move on.

STEP❼ - CHOOSING THE COLOUR DESIGN AND IMPLEMENTING THE CSS

Now it’s time to get to grips with our CSS. Open your chosen coding editor

and make a new file called ‘app.css’ and save it in your ‘css’ folder, within

your file structure.

Before we get into that though, let’s choose some colours. I’ve already

mentioned that using hexadecimal codes or RGB codes for colours will

give far greater options.

Many designers use a colour wheel. It is said that opposite colours

generally look good together. There are many examples of these online.

I particularly like the Adobe Colour Wheel Generator. Take a look, via the

link below:

https://color.adobe.com/create/color-wheel

https://color.adobe.com/create/color-wheel

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 36 ~

Alternatively, choose some colours from this table:

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 37 ~

I’m keeping my colour scheme fairly straightforward.

#EB8716 – for my header

#90CEE8 – for the wrapper around my main content

#006F9E – for my footer

Okay, with that decided let’s move on to building the CSS.

If it’s not already, open ‘app.css’ and add the following code:

html, body{

 margin: 0px;

}

header {

 background-color: #EB8716;

 color: #fff;

 width: 98%;

 height: 200px;

 margin: 1%;

}

header h1{

 text-align: center;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 38 ~

 font-family:'Franklin Gothic Medium', 'Arial Narrow', Arial, sans-

serif;

 padding: 60px;

 font-size: 50px;

}

.wrapper {

 background-color: #90CEE8;

 width: 98%;

 height: 400px;

 margin: 1%;

}

.wrapper .page{

 width: 19%;

 height: 180px;

 background-color: #006F9E;

 display: inline-block;

 margin: 0.4%;

}

footer {

 background-color: #006F9E;

 color: #fff;

 width: 98%;

 height: 60px;

 margin: 1%;

}

footer p{

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 text-align: center;

 padding: 20px;

}

Feel free to change the colour hex codes for your own.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 39 ~

When we refresh our page we have the following result:

Let’s examine the CSS in more detail.

You can see that we have used two different types of selectors here. The

first type is an element selector and the second is a class selector. There is

also a third that I should mention and that is an id selector.

So what’s the difference?

An id selector uses the form - #id

A class selector uses the form - .class

An element selector uses the form - element e.g. p = style all <p>

elements

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 40 ~

But it doesn’t stop there. Selectors can be joined together to form
complex patterns.

You can see a simple example of this here where we have used:

header h1{

This tells the browser rules that apply only to h1 elements within the
header. This pattern is straightforward, but selectors can be joined into
many forms. We will see more selector patterns as we work through the
book. However, if you want to know more about selectors, a simple
google search will reveal a host of options.

Most of the rules are repeated, so we’ll just examine distinct rules. You

can then apply that knowledge to others too. Some of the rules, you have

also seen before. That said, let’s take a look.

 background-color: #EB8716;

//CHANGES THE BACKGROUND COLOUR

 color: #fff;

// CHANGES THE TEXT COLOUR

 width: 98%;

// CHANGES THE WIDTH OF THE ELEMENT

 height: 200px;

// CHANGES THE HEIGHT OF THE ELEMENT

 margin: 1%;

// SETS ALL MARGINS OF THE ELEMENT

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

// CHANGES THE FONT FACE OF THE ELEMENT

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 41 ~

 text-align: center;

// ALIGNS THE ELEMENT TO THE CENTRE

 padding: 20px;

// ADDS PADDING AROUND THE ELEMENT

 display: inline-block;

// DISPLAYS THE ELEMENT ACROSS THE PAGE AND WRAPS IT AT THE EDGE OF THE

DISPLAY

It is recommended for you to experiment with these values and see the

results for yourself. That is the best way to learn.

You can rest easy in the knowledge that all of the files are available to

download, if you make a mistake you cannot resolve.

STEP❽ - ADDING WELL-FORMED IMAGE ELEMENTS

Okay, next we’re going to add the images source information, the

alternative text, titles, and image class.

Let’s start with the image source URL’s.

Open your images folder and add all of your image information to each of

the image src=”” placeholders, one at a time, in the form:-

‘images/[image name].[extension]’

In my case, as an example, they will be:

images/amazon.png
images/aol.jpg
images/facebook.png
images/googlemaps.png
images/linkedin.png

images/paypal.png
images/santander.png
images/twitter.png
images/youtube.png
images/zoom.jpg

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 42 ~

Fill in the alt text and title as appropriate and add ‘image_link’ as the

class.

Now your ‘website.html’ file should look something like this:

<html>

 <head>

 <title>Fast Access Web Menu</title>

 <link rel="stylesheet" href="css/app.css">

 </head>

 <body>

 <header>

 <h1>Fast Access Web Menu</h1>

 </header>

 <div class="wrapper">

 <div class="page">

 <img src="images/amazon.png" title="Amazon"

alt="Amazon Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/aol.jpg" title="AOL Mail" alt="AOL

Mail Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/facebook.png" title="Facebook"

alt="Facebook Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/googlemaps.png" title="Google Maps"

alt="Google Maps Link" class="image_link">

 </div>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 43 ~

 <div class="page">

 <img src="images/linkedin.png" title="LinkedIn"

alt="LinkedIn Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/paypal.png" title="PayPal"

alt="PayPal Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/santander.png" title="Santander"

alt="Santander Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/twitter.png" title="Twitter"

alt="Twitter Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/youtube.png" title="Youtube"

alt="Youtube Link" class="image_link">

 </div>

 <div class="page">

 <img src="images/zoom.jpg" title="Zoom" alt="Zoom

Link" class="image_link">

 </div>

 </div>

 <footer>

 <p>© Copyright Garry Owen 2022</p>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 44 ~

 </footer>

 </body>

</html>

STEP❾ - ADDING STYLES TO THE IMAGES

Let’s make a quick update to our CSS to address the image class we just

added.

Open ‘app.css’ and add the following code to the bottom:

.image_link{

 height: 180px;

 width: 18.5vw;

 margin: 1% 0 1% 1%;

}

.image_link:hover {

 filter: grayscale(70%);

}

So what’s going on here?

 height: 180px;

 width: 18.5vw;

This is to make all of your images appear uniformly the same size.

 margin: 1% 0 1% 1%;

This sets the margin with a slight offset to give a kind of 3D drop shadow

effect. Remember margin settings are Top, Right, Bottom, and Left (TRBL).

I always think of the word ‘trouble’ to help remember this. So the next

time you’re having TROUBLE trying to remember the order, hey presto!!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 45 ~

The next part has a selector pattern we haven’t seen before.

.image_link:hover {

This simply means, when you hover an element, with the class of

‘image_link’ with a mouse, the rules are applied.

Lastly, we set a rule for when we are hovering the element:

filter: grayscale(70%);

This sets the colour of the element hovered to 70% greyscale. The same

as opacity, you can set this with decimals or percentages. 1 = 100%, 0.7 =

70%.

So, how does it all look now? Let’s take a peek.

Looks pretty good. And if we hover over an element, what does that look

like?

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 46 ~

You can see here, we are hovering over the Facebook link.

Moving swiftly on…

STEP❿ - IMPLEMENTING WELL-FORMED HYPERLINKS

The final step.

All we have left to do now is fill in the URL information in the href=””

placeholders, fill in the alternative text, and add our titles. Let’s take one

example:

Now, fill in the rest.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 47 ~

 If you don’t want to open your links on the same page, you

can add a target attribute to your anchor tag: target="_blank"

This will open the link in a new tab when clicked.

Amazing stuff!!

Now your final ‘website.html’ mark-up should look like this:

<html>

 <head>

 <title>Fast Access Web Menu</title>

 <link rel="stylesheet" href="css/app.css">

 </head>

 <body>

 <header>

 <h1>Fast Access Web Menu</h1>

 </header>

 <div class="wrapper">

 <div class="page">

 <a href="https://amazon.co.uk" alt="Visit Amazon"

title="Visit Amazon">

 <img src="images/amazon.png" title="Amazon"

alt="Amazon Link" class="image_link">

 </div>

 <div class="page">

 <a href="https://mail.aol.com/webmail-std/en-gb/suite"

alt="Visit Aol Mail" title="Visit Aol Mail">

 <img src="images/aol.jpg" title="AOL Mail" alt="AOL

Mail Link" class="image_link">

 </div>

 <div class="page">

 <a href="https:facebook.com" alt="Visit Facebook"

title="Visit Facebook">

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 48 ~

 <img src="images/facebook.png" title="Facebook"

alt="Facebook Link" class="image_link">

 </div>

 <div class="page">

 <a href="https://www.google.com/maps" alt="Visit Google

Maps" title="Visit Google Maps">

 <img src="images/googlemaps.png" title="Google Maps"

alt="Google Maps Link" class="image_link">

 </div>

 <div class="page">

 <a href="https://linkedin.com" alt="Visit LinkedIn"

title="Visit LinkedIn">

 <img src="images/linkedin.png" title="LinkedIn"

alt="LinkedIn Link" class="image_link">

 </div>

 <div class="page">

 <a href="https://paypal.com" alt="Visit PayPal"

title="Visit PayPal">

 <img src="images/paypal.png" title="PayPal"

alt="PayPal Link" class="image_link">

 </div>

 <div class="page">

 <a href="https://santander.co.uk" alt="Visit Santander"

title="Visit Santander">

 <img src="images/santander.png" title="Santander"

alt="Santander Link" class="image_link">

 </div>

 <div class="page">

 <a href="https://twitter.com" alt="Visit Twitter"

title="Visit Twitter">

 <img src="images/twitter.png" title="Twitter"

alt="Twitter Link" class="image_link">

 </div>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 49 ~

 <div class="page">

 <a href="https://youtube.com" alt="Visit Youtube"

title="Visit Youtube">

 <img src="images/youtube.png" title="Youtube"

alt="Youtube Link" class="image_link">

 </div>

 <div class="page">

 <a href="https://zoom.us" alt="Visit Zoom" title="Visit

Zoom">

 <img src="images/zoom.jpg" title="Zoom" alt="Zoom

Link" class="image_link">

 </div>

 </div>

 <footer>

 <p>© Copyright Garry Owen 2022</p>

 </footer>

 </body>

</html>

As was said earlier in the exercise, your version will look a little different,

have different links, and may have different colours and fonts chosen, but

the functionality should be the same.

I use a similar program to this every day with over 50 of my most visited

sites. I have so many sites that I use often, I find the tools that are built

into browsers are not as convenient. I hope you can make great use of

this going forwards, as I have.

 Copy the URL for your menu and put it on your book marks

bar for fast access, whenever you need it!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 50 ~

The final result. Have a play around with it. See if you can improve it. Why

not add another row of links or add animation? Be imaginative!

All files and images associated with this exercise can be found at:

https://wddtrw/resources/learntocode/fastaccesswebmenu.zip

https://wddtrw/resources/learntocode/fastaccesswebmenu.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 51 ~

Make yourself a well-deserved cuppa and let’s move on!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 52 ~

CREATING A WEB APP

WHAT IS A WEB APP AND HOW IS IT DIFFERENT FROM A WEBSITE?

A web application also referred to as a web app, is a computer program

with functionality and interactive elements. You use regular web

technologies to build it but it also stores data and manipulates it

according to a user's needs. Users can access it via the internet.

A website, on the other hand, is a collection of publicly accessible pages

containing either documents, images, audio, text, or other files that users

can access through the internet.

Okay, so they sound quite similar, right? From a user’s perspective,

essentially they are. They are both accessed via a web browser, you can

search google and find either.

In a nutshell, the main differences are:

 A website provides information to view and read that cannot be

manipulated.

 Authentication isn’t mandatory with a regular website.

 Via a website information is publicly accessible – no sign-up

required.

 A website uses only basic web technologies.

 It’s cheaper to host.

Normally, a web app will be built user server-side technologies, such as

PHP or Node.js, but for the purpose of example, we’ll be using methods

that can be run locally on your machine, in a browser.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 53 ~

Later in this book, I will demonstrate how to deploy your projects onto a

remote server and make them publicly accessible.

It is possible to set up a local server to run on your

PC or Mac, but that is beyond the scope of this

book. If you’d like to learn more about setting up

a local programming environment, you can get

book 1 in my series ‘Web Design and

Development – The Right Way!’ – Setting up your

local programming environment, via the link

below:

https://viewbook.at/wddtrw1

LESSON OBJECTIVE:

Design and develop a web-based quiz

application with a mobile-first approach.

Build a bank of questions that the user can

interactively answer and get their results.

Develop the system to allow users to add or

delete questions and include a countdown

timer.

STEP❶ - SETTING UP YOUR FILE STRUCTURE

Here goes nothing, guys! Let’s start building our next exciting project.

Firstly, let’s implement our required file structure.

Mobile First approach:

A “mobile-first” approach

involves designing a desktop site

starting with the mobile version,

which is then adapted to larger

screens (contrary to the

traditional approach of starting

with a desktop site and then

adapting it to smaller screens).

https://viewbook.at/wddtrw1

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 54 ~

By now you should be getting familiar with setting up your file structure.

This time we need a new folder on your desktop called ’web app’. Within

that folder add a ‘css’ folder, an ‘images’ folder, a ‘js’ folder, and a ‘json’

folder. Finally, open your chosen coding editor and make a new file called

‘quiz_app.html’. If you have done everything correctly you should have a

folder called ‘web app’ with the following file structure:

So you’ve seen the other folders before, but what’s that ‘json’ folder?

Normally, we would use a database to allow a user to add and delete

data. For this exercise, we are going to mimic that functionality by writing

to a JSON file.

JSON-like documents are used as the data structure for a NoSQL text-

based database system, called MongoDB. If you want to learn more about

that, take a look at the link below. However, we won’t be using it here.

https://www.mongodb.com/

WHAT IS A JSON FILE?

 JSON stands for JavaScript Object Notation

 JSON is a text format for storing and transporting data

 JSON is "self-describing" and easy to understand

 JSON is language-independent – meaning it can be used in many

programming languages – therefore, it’s easy to pass data between

those different languages

https://www.mongodb.com/

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 55 ~

A simple example of a JSON string would look like this:

{"name":"Garry Owen", "age":47, "car":"BMW"}

Simple, right? Notice, text strings are in double-quotes, while numbers

aren’t. This is so numbers can be recognised as values and allow us to use

them in calculations. If that doesn’t make sense, don’t worry too much

about that for now. We will look at different data types later and explain

this in more depth.

This structure is called key-value pairs. A key-value pair

consists of two related data elements: A key, which is a

constant that defines the data set, and a value, which is a

variable that belongs to the set.

 E.g. “name”:”Garry Owen” – “Key”:”Value”

The JSON string defines 3 properties (name, age, and car) and each

property has a value. If you parse the JSON string with JavaScript, you can

access the data as an object, like this:

let personName = obj.name;

let personAge = obj.age;

We can now access that information and use it in the program.

WHY USE JSON?

The JSON format is syntactically similar to JavaScript code for constructing

objects. Therefore, we can easily convert JSON data into JavaScript. Even

better, JavaScript has a built-in function for converting JSON strings into

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 56 ~

objects, and JavaScript also has a built-in

function for converting a JavaScript object

into JSON. Top class!

JSON to JavaScript looks like this:

JSON.parse()

While, JavaScript object to JSON, looks like this:

JSON.stringify()

So let’s put that all together and take a look at how we would pass our

JSON string into a JavaScript object.

<html>

<head></head>

<body>

<h2>Convert JSON string into a JavaScript object.</h2>

<div id="result"></div>

<script>

//JSON String

const person = '{"name":"Garry Owen", "age":47, "car":"BMW"}';

//Make a new JavaScript Object

const obj = JSON.parse(person);

//Display the results in the div

document.getElementById("result").innerHTML = obj.name + " is " +

obj.age+ " and drives a " + obj.car;

</script>

</body>

</html>

Syntactically:

In a way that relates to the

structure of statements or

elements in a computer language

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 57 ~

If we take a quick look we can see that we have placed our JSON string

into a constant called person. Then we have created a new JavaScript

object and parsed our JSON ‘person’ string into it and displayed the

results in our <div>, by selecting each of the key-value pairs by

referencing the key properties of our object (obj).

This results in:

You’re doing great! Let’s move on…

STEP❷ - IMPLEMENTING THE HTML STRUCTURE

You should be fairly familiar with the HTML structure by now. Before we

add any trimmings, add the mark-up below to our ‘quiz_app.html’ file.

<html>

 <head>

 </head>

 <body>

 </body>

</html>

With that done, let’s add some meat on the bones.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 58 ~

How is this web app going to function?

1. We want our web app to have a mobile-first approach – so it’s got

to fit nicely and look good on a mobile phone.

2. We want to use JavaScript to fetch questions from a JSON text file.

3. We want the user to be able to interact and answer the questions

and get their results.

4. We want the user to be able to add or delete questions and update

the JSON file.

So, let’s take a look at a rough layout.

Okay, so first we want to style the layout with a header, footer and

content attributes. We have a question and 4 possible multi-choice

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 59 ~

answers and prevision for a previous and next button. With that decided

let’s add some mark-up to our HTML file.

<!DOCTYPE html>

<html>

<head>

 <meta name="viewport" content="user-scalable=no, width=device-width"

/>

 <link rel="stylesheet" type="text/css" href="css/app.css">

 <title>Question Time</title>

 <script type="text/javascript"

src="json/questions.json"></script>

<body>

 <div id="header">

 <h1>Question Time
The Quiz App</h1>

 </div>

 <div class="quiz-wrapper">

 <div id="quiz"></div>

 </div>

 <button id="previous"><p>Previous Question</p></button>

 <button id="next"><p>Next Question</p></button>

 <button id="submit"><p>Submit Quiz</p></button>

 <div id="results"></div>

 <div id="footer">

 <h5>Written by Garry Owen © Copyright December 2021</h5>

 </div>

 <script src="js/app.js"></script>

</body>

</html>

Okay, so we’ve got our basic mark-up. Let’s examine it more closely.
Much of this mark-up you have seen before, but we have a few new tags
in there too.

The first line of code we hit inside the head is:

<meta name="viewport" content="user-scalable=no, width=device-width" />

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 60 ~

This line tells the browser that on a touch screen device the user

shouldn’t be able to zoom in and out. This is intentional so that the web

app fits nicely on a phone screen. It also set the width of the web page to

the device width. That will mean that it will fill 100% of the width of a

device. By default, the user is allowed to scale the screen, but they won’t

need to for our web app because it’ll be easy to read and navigate.

Next we have:

 <link rel="stylesheet" type="text/css" href="css/app.css">

 <title>Question Time</title>

You should be familiar with these two lines by now. The first connects the

external CSS file and the next gives the page its title.

Then, just inside the <body> tag we have:

<div id="header"><h1>Question Time
The Quiz App</h1></div>

This opens a new div with the id of header and adds a <h1> title within

the header.

Then, we have:

<script type="text/javascript" src="json/questions.json"></script>

This is similar to what we did to pull in / reference the JavaScript file, in

our first exercise. The only difference this time is that we are referencing

JSON.

For good search engine optimisation, you should only ever

have one <h1> title on any given web page. <h1> is seen as

being the most important and with each decrement i.e.

<h2>… <h3>… and so on, the algorithm of a search engine

deciphers it as less and less important.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 61 ~

Okay, next we have two nested <div> tags.

 <div class="quiz-wrapper">

 <div id="quiz"></div>

 </div>

This is where we will display our quiz. Note we

have given one div a class of quiz-wrapper and

the other an id of quiz.

Next, we have three <button> tags. These will perform our user interaction

requirements for our quiz.

 <button id="previous">Previous Question</button>

 <button id="next">Next Question</button>

 <button id="submit">Submit Quiz</button>

Each one is given an id that represents its purpose.

Then, we have another div where we will display our results.

<div id="results"></div>

Next, we have our footer. Change the information here to reflect your

name and the correct date.

 <div id="footer">

 <h5>Written by Garry Owen © Copyright December 2021</h5>

 </div>

Notice that we have used a <h5> tag. This will display the text as smaller

text and set the hierarchy for our search engine, as explained previously.

Finally, just before we close the <body>, we have a connection to our

‘app.js’ file. Sometimes we can place this in the <head></head> part of our

HTML. It is important in this case that it is placed just inside the closing body

tag.

Nested:

One element can be placed

inside another element. Nesting

allows you to apply multiple

HTML tags to a single piece of

content.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 62 ~

 <script src="js/app.js"></script>

</body>

This is because the order in which the code is read is paramount. HTML

loads from top to bottom. The head loads first, then the body, and then

everything inside the body. We are making sure it is read last after we have

declared our HTML tags with various classes and ids. If we put it in the head,

the JavaScript wouldn’t recognise those attributes, as they wouldn’t have

been read by the browser yet.

STEP❸ - BUILDING THE QUESTION BANK JSON FILE

Building our JSON question bank is fairly straightforward. Each question

needs the question itself, four possible answers, and the correct answer.

Let’s take a simple empty JSON structure with these elements:

 {

question: "",

 answers: {

a: "",

b: "",

c: "",

d: ""

},

correctAnswer: ""

 }

As our question bank will have a number of questions, we can structure

each question on one line, if preferred, like this:

{question: "", answers: {a: "", b: "", c: "", d: ""}, correctAnswer: ""},

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 63 ~

That will keep our file much shorter. For the purpose of our web app we’ll

call all of the questions ‘data’, by declaring the name and wrapping the

whole thing in square brackets, like this:

data = [

 {question: "", answers: {a: "", b: "", c: "", d: ""}, correctAnswer: ""},

 {question: "", answers: {a: "", b: "", c: "", d: ""}, correctAnswer: ""},

 {question: "", answers: {a: "", b: "", c: "", d: ""}, correctAnswer: ""},

 {question: "", answers: {a: "", b: "", c: "", d: ""}, correctAnswer: ""},

 {question: "", answers: {a: "", b: "", c: "", d: ""}, correctAnswer: ""}

];

This demonstrates how 5 questions would look. Notice that the last

question has the comma removed from the end.

I’m going to add 20. You can add as many or as few as you like.

Take your time and add your questions, as below before moving on to the

next step. Note! You can download my questions via the link at the end of

this section, if preferred.

 {

question: "The Plaka is the oldest quarter of which city?",

answers: {

a: " Athens",

b: "Prague",

c: "Rome",

d: "Vienna"},

correctAnswer: "a"

 },

I have laid it out here so that it is easier for you to see what I have done. Of

course, if you prefer to keep the layout like this, then that’s great too!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 64 ~

 STEP❹ - ADDING SOME STYLE

If you take a look at how our web app looks at this stage, it’s very plain and

dull. The elements are there, but it doesn’t have the look and feel of a web

app just yet.

Next, make a new file called ‘app.css’ and save it in the ‘css’ folder.

Referring back to our layout diagram and our HTML we need to style the

following elements.

body, header, h1, quiz-wrapper, quiz, rad_butn, button, previous, next,

submit, results and footer.

Let’s build it!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 65 ~

Add the following code to your ‘app.css’ file and save.

body{

 margin: 0;

 padding: 0px;

 font-family: Arial;

 font-size: 20px;

 text-align: center;

 background-color: #eee;

 overflow-x: hidden;

}

#header{

 border-bottom: 1px solid #666;

 color: #222;

 display: block;

 padding: 10px 0;

 text-align: center;

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999));

}

#header h1{

 text-shadow: 0px 1px 0px #fff;

 font-weight: 300;

 margin: 0px;

 padding: 10px;

 font-size: 25px;

}

.question{

 font-size: 30px;

 margin: 0 5% 20px 5%;

}

.answers {

 margin-bottom: 20px;

 text-align: left;

 display: inline-block;

}

.answers label{

 display: block;

 margin-bottom: 10px;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 66 ~

}

button p{

 margin-top: -8px;

}

button{

 font-weight: 200;

 font-size: 20px;

 width: 300px;

 height: 50px;

 padding: 20px;

 cursor: pointer;

 border-radius: 3px;

 color: #fff;

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#aaa), to(#888));

 margin-top: 15px;

}

button:hover{

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#bbb), to(#999));

}

.quiz-wrapper{

 position: relative;

 height: 200px;

 margin: 30px 0 60px 0;

}

.rad_butn {

 transform: scale(200%);

 margin: 0 30px 0 -20px;

}

#results{

 margin-top: 15px;

 padding: 20px;

}

.slide{

 position: absolute;

 left: 0px;

 top: 0px;

 width: 100%;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 67 ~

 z-index: 1;

 opacity: 0;

 transition: opacity 0.5s;

}

.active-slide{

 opacity: 1;

 z-index: 2;

}

#footer {

 position: absolute;

 bottom:0;

 width:100%;

 height:40px;

 text-shadow: 0px 1px 0px #fff;

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999));

 }

 #footer h5{

 text-align: center;

 margin-top: 10px;

 font-size: 15px;

 }

At first glance, this looks quite long and complex, but you’ll soon see

when we break it down that each element is straightforward.

Just a quick reminder, you don’t have to type all of this in. All files are

available to download. A download link is at the end of every exercise.

Before we break it down, let’s take a look at the result, so that we can

visualise our expected result so far. However, keep in mind that the result

will look a little different because we will also be manipulating our CSS

with our JavaScript code in the next section.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 68 ~

It’s looking much different to our initial preview.

So let’s take a look at the CSS. We’ll break this into elements, as we go.

Starting off with the <body> element rules.

body{

 margin: 0; // Set all margins to 0px (TRBL)

 padding: 0px; // Set padding to 0px (Space around an element’s content)

 font-family: Arial; // Set font to Arial font face

 font-size: 20px; //Set the font size to 20px

 text-align: center; //align text to the centre

 background-color: #eee; // set the background colour to off white

 overflow-x: hidden; // prevent scrolling on the X axis

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 69 ~

Okay, aside from the overflow-x command, if you’ve been following

through the book step-by-step, you will have seen all of these commands

before.

In a nutshell, if the content is taller or wider than the screen, your

browser will automatically add scrollbars. You can prevent both of these

by adding the overflow: hidden command for both the X and Y-axis. Or

you can control each axis independently with overflow-x and overflow-y.

The hidden command is not the only option. Choose from:

 visible - Default. The overflow is not clipped. The content renders

 outside the element's box
 hidden - The overflow is clipped, and the rest of the content will be

invisible
 scroll - The overflow is clipped, and a scrollbar is added to see the

 rest of the content

 auto - Similar to scroll, but it adds scrollbars only when

 necessary

On to the next section, the header:

#header{ //These rules apply to all elements within the header div

 border-bottom: 1px solid #666;

// Display a solid border on the bottom edge of the element

 color: #222;

// Make the text colour dark grey

 display: block;

// Display the element as a block. Starts a new line and takes up the

whole width

 padding: 10px 0;

// Set padding top and bottom to 10px and right and left to 0

 text-align: center;

// Align text to the centre

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999));

// Create a gradient light-grey to dark-grey, from top to bottom

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 70 ~

}

#header h1{ //These rules only apply to <h1> elements within the header

div

 text-shadow: 0px 1px 0px #fff; // text shadow - offset-x | offset-y

 | blur-radius | colour

 font-weight: 300; // Set font thickness to thin (900 max)

 margin: 0px; // Set all margins to 0px (TRBL)

 padding: 10px; // Set padding to 10px

 font-size: 25px;// Set the font size to 25px

}

On to the next section, the questions and answers:

.question{

 font-size: 30px;

 margin: 0 5% 20px 5%;

}

.answers {

 margin-bottom: 20px;

 text-align: left;

 display: inline-block;

}

.answers label{

 display: block;

 margin-bottom: 10px;

}

All of these commands you have seen above. These won’t do anything yet

but will affect the questions and answers layout. They will be used with

JavaScript in the next section. More on that later.

button p{ // This only affect elements inside the button and p tags

 margin-top: -8px; //Moves button text up 8px

}

button{ // This affects all elements within the button tags

 font-weight: 200; // Font thickness

 font-size: 20px; // Font size in pixels

 width: 300px; // Width of the buttons

 height: 50px; // Height of the buttons

 padding: 20px; // Padding around the elements content

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 71 ~

 cursor: pointer; // Change the cursor to a pointer – more settings

 explained over the page

 border-radius: 3px; // Set all corners of the element to a radius of

 3px

 color: #fff; // Set text colour to white

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#aaa), to(#888)); // Set background of the button to a gradient

 margin-top: 15px; // Make a 15px space above all button elements

}

button:hover{ // This affects only button elements hovered with the mouse

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#bbb), to(#999)); // Change the background colour to a lighter

 gradient

}

The cursor CSS command has many settings for different purposes. See the

diagram below for details:

Simply change to suit your project.

On to the next section, the quiz wrapper and results:

.quiz-wrapper{ // Applies to everything within the quiz-wrapper class

 position: relative; // Position element relative to its normal position

 height: 200px; // Set element to 20px tall

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 72 ~

 margin: 30px 0 60px 0; // Set margins (TRBL)

}

.rad_butn { // Applies to everything with the rad_butn class

 transform: scale(200%); // Double the default size of the element

 margin: 0 30px 0 -20px; // Set margins (TRBL)

}

#results{ // Applies to everything within the results div

 margin-top: 15px; // Set top margin to 15px

 padding: 20px; // Set padding to 20px

}

On to the next section, question slides:

.slide{

 position: absolute;

 left: 0px;

 top: 0px;

 width: 100%;

 z-index: 1;

 opacity: 0;

 transition: opacity 0.5s;

}

.active-slide{

 opacity: 1;

 z-index: 2;

}

Each question is separated and displayed independently. We will use this

with JavaScript to fade each question in and out. More on that later.

Finally, the footer:

#footer { // Applies to everything that falls within the footer section

 position: absolute; //position the element precisely

 bottom:0; // Set the element position to 0px from the bottom of the

 parent element (in our case the body)

 width:100%; // Set the width of the element to 100%

 height:40px; // Set the height of the element to 40px

 text-shadow: 0px 1px 0px #fff; // text shadow - offset-x | offset-y

 | blur-radius | colour

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 73 ~

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999)); // Set background colour to a gradient image

 }

 #footer h5{ // Applies only to <h5> elements within the footer

 text-align: center; // Align text to the centre

 margin-top: 10px; // move element down 10px

 font-size: 15px; // Set font size to 15px – this over-rides the

 default size for <h5> elements

 }

You’re doing great! Before you move on to the next step have a well-

deserved break.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 74 ~

STEP❺ - BUILDING THE JAVASCRIPT ENGINE

Okay, so hopefully you’ve had a pleasant break and you’re now ready to

face the next part of this exercise. We’re going to tackle this in parts.

We’ll break it down into functions. Each function will perform a particular

task and together they will form the engine to allow the user to interact

with the quiz and get their results.

Open your chosen coding environment and make a new file called ‘app.js’,

and save it in the ‘js’ folder.

Let’s do a quick recap of our HTML structure for our quiz. The main three

elements we’re interested in here are:

 <div id="quiz"></div>

 <button id="submit"><p>Submit Quiz</p></button>

 <div id="results"></div>

In our JavaScript we can select these elements and make references to

them like so:

 const quizBox = document.getElementById('quiz');

 const resultsBox = document.getElementById('results');

 const submitButton = document.getElementById('submit');

What’s the purpose const?

In JavaScript, you can set variables in different ways. Each way has slightly

different properties. However, the differences are mainly focussed on the

scope of the variable. Scope refers to the visibility of variables. In other

words, which parts of a program can see or use it.

Other than scope, in a nutshell:

 var variables can be updated and re-declared within their scope

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 75 ~

 let variables can be updated but not re-declared

 const variables can neither be updated nor re-declared

JavaScript has 3 types of scope:

 Block scope

 Function scope

 Global scope

Before 2015, JavaScript only had Global Scope and Function Scope.

JavaScript ES6 introduced two new important keywords: let and

const.

Block Scope

Variables declared inside a { } block cannot be accessed from outside the

block.

Function Scope

Variables declared within a JavaScript function, become local to the

function and have Function Scope.

Global Scope

A variable declared outside a function, becomes global and therefore has

Global Scope.

Next, we need to build the quiz, render the results and allow user

interaction. We can start by laying out the functions and then filling them

in as we go.

function buildQuiz(){}

function showResults(){}

buildQuiz();

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 76 ~

submitButton.addEventListener('click', showResults);

Here we have a function to build the quiz and another to show the
results. We are calling or invoking the buildQuiz function with buildQuiz(),
and when the user clicks on the submit button we are calling or invoking
the showResults function.

Okay, with that understood let’s take a look at how we are going to use
our JSON question bank. In our HTML we have included the
‘questions.json’ file. As we saw earlier we wrapped that in square
brackets and gave the whole dataset the name ‘data’. With that in mind it
is now easy to bring all of our questions into a JavaScript array, like so:

 const myQuestions = [];

 for(i=0; i < data.length; i++){

 myQuestions.push(data[i]);

 }

Let’s examine what we’ve done here. Firstly,
we make a new empty array.

const myQuestions = [];

Secondly, we grab all of the information from

our JSON dataset and push it into our new

array. To do this we have used a For Loop. A

For Loop executes a block of code as long as

the specified condition is true.

A For Loop has the following syntax:

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Array:

An array is a data structure,

which can store a fixed-size

collection of elements of the

same data type. An array is

used to store a collection of

data, but it is often more useful

to think of an array as a

collection of variables of the

same type.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 77 ~

In our case:

for(i=0; i < data.length; i++){

This breaks down into:

i=0; - ‘i’ has its initial value set to 0.

i < data.length; - when ‘i’ is less than the length of data

i++ - Increment i by 1 each time the code block is executed

For each loop iteration the following code block is executed:

 myQuestions.push(data[i]);

This line of code pushes the next question into our array. The loop cycles

until it reaches the end of the dataset. In our case called ‘data’.

STEP❻ - THE BUILD QUIZ FUNCTION

Add the following code to your ‘app.js’ file and save it.

function buildQuiz(){}

function showResults(){}

 const quizBox = document.getElementById('quiz');

 const resultsBox = document.getElementById('results');

 const submitButton = document.getElementById('submit');

 const myQuestions = [];

 for(i=0; i < data.length; i++){

 myQuestions.push(data[i]);

 }

buildQuiz();
submitButton.addEventListener('click', showResults);

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 78 ~

This structure, the structure of your code, is super important. Please

ensure you follow it closely. Due to a behaviour of JavaScript called ‘The

Temporal Dead Zone’. I know this sounds like a sci-fi phrase, but it is

something that occurs in JavaScript when you try to access a variable or

an array before it has been declared or defined.

If at any point your code doesn’t behave the way you expect, you can take

a look at your browser console and get some error information. You can

access it via menu options in your browser or, in Google Chrome, for

example, use shortcut keys ‘CTRL + Shift + I’. Below is an example of a

Google Chrome Console error relating to a Temporal Dead Zone.

Okay, now replace the function buildQuiz(){} with the following function:

 function buildQuiz(){

 const output = [];

 myQuestions.forEach(

 (currentQuestion, questionNumber) => {

 const answers = [];

 for(letter in currentQuestion.answers){

 answers.push(

 `<label>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 79 ~

 <input type="radio" name="question${questionNumber}"

value="${letter}" class="rad_butn">

 ${letter} :

 ${currentQuestion.answers[letter]}

 </label>`

);

 }

 output.push(

 `<div class="slide">

 <div class="question"> ${(questionNumber+1)}.

${currentQuestion.question} </div>

 <div class="answers"> ${answers.join("")} </div>

 </div>`

);

 }

);

 quizBox.innerHTML = output.join('');

 }

With that done, let’s take a closer look at what each line of the ‘buildQuiz’

function does.

First, we create an empty array and store it in a variable called ‘output’ to

contain all of the HTML output, including questions and user answer

choices.

const output = [];

Next, build the HTML for each question, looping through each question

like so:

myQuestions.forEach(

 (currentQuestion, questionNumber) => {

//Code block to be executed here

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 80 ~

We’re using an arrow (=>) function to perform our operations on each

question. Because this is in a forEach loop, we get the current value, the

index (the position number of the current item in the array), and the array

itself as parameters. We only need the current value and the index, which

for our purposes, we’ll name currentQuestion and questionNumber

respectively.

Now let’s look at the code block we want to execute inside our loop. For

every question, we want to generate the correct HTML, and so our first

step is to create an array to hold the list of possible answers.

const answers = [];

Next, we’ll use a loop to fill in the possible answers for the current

question.

For each possible answer, we’ll create a radio button, which we’re

enclosing in a <label> element. This is so that users can click anywhere on

the answer text to select that answer. If the label was omitted, then the

users would have to click on the radio button itself.

However, you may recall earlier that we made our radio buttons larger.

This will improve overall usability, especially because we are designing

this with a mobile-first approach in mind.

for(letter in currentQuestion.answers){

 answers.push(

 `<label>

 <input type="radio" name="question${questionNumber}"

value="${letter}" class="rad_butn">

 ${letter} :

 ${currentQuestion.answers[letter]}

 </label>`

);

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 81 ~

}

Once we have our list of answer buttons, we can push the question HTML

and the answer HTML onto our overall list of outputs. Let’s break it down

some more.

for(letter in currentQuestion.answers){

 // Code block to execute

}

You’ll recognise the For Loop from before. However, this is in a slightly

different arrangement and is known as a For…In Loop.

It has the syntax:

for (property in object) {

 // Code block to be executed

}

Then, the same as with our JSON file, we need to push the current

question answers into the array.

answers.push(DATA TO PUSH INTO ARRAY);

This adds a block of data into the array. In our case, we are adding:

 A radio button

 The letter associated with the answer

 The answer associated with that letter

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 82 ~

All wrapped neatly inside a <label></label> tag.

 `<label>

 <input type="radio" name="question${questionNumber}"

value="${letter}" class="rad_butn">

 ${letter} :

 ${currentQuestion.answers[letter]}

 </label>`

The join expression takes our list of answers and puts them together in

one string that we can output into our answers div.

Next, we have to bring it all together and push the question and possible
answers into the output array.

 output.push(

 `<div class="slide">

 <div class="question"> ${(questionNumber+1)}.

${currentQuestion.question} </div>

 <div class="answers"> ${answers.join("")} </div>

 </div>`

);

Notice here we have wrapped our output in a <div> with the class of slide.

We are using this to separate each of the questions, instead of having

them presented as a sequential list. More on that later.

Let’s break it down:

Inside our slide <div></div> we first have our question, presented in its

own div with the class of question.

<div class="question"> ${(questionNumber+1)}. ${currentQuestion.question}

</div>

Inside that division, we have our question number

${(questionNumber+1)}. followed by a point and a space. You will

notice we have added 1 to the questionNumber value. This is because

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 83 ~

questionNumber represents the position index of the data in the array,

and as the array index starts at zero (0), we have added 1 to make our

question numbers start from 1. The dot or point and space is so that each

question number is displayed in the desired format I.E. 1. [question text?],

2. [question text?] and so on. Next, we have the question text itself -

${currentQuestion.question}, which forms the overall desired

numbered question format, as below:

1. The Plaka is the oldest quarter of which city?

Next, we grab the data from the answers array, like so:

<div class="answers"> ${answers.join("")} </div>

And join it together with the question.

Now that we’ve generated the HTML for each question and answer set,

we can join it all together and show it on the page:

quizContainer.innerHTML = output.join('');

Inside each of our push commands, we have wrapped our

code block with back ticks (`). In JavaScript, this allows code

to be spread over several lines. This is much the same as how

we can use /*…*/ for wrapping comments over several lines.

This is super important. Double quotes (") and single quotes

(') only allow code or data to be presented over a single line.

Template Literals

`${expression}` A template literal is an easy way to interpolate
variables into strings. Interpolation is when you add variables within a
string. E.g `Welcome ${firstName} ${lastName}!`. As shown in the
example here, template literals can only be used in JavaScript when the

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 84 ~

string is enclosed with back ticks. Informally they are sometimes called
template strings.

Their use is very straightforward. After setting any variable you can use it
within a string.

let age = 37;

let text = `John is aged ${age} years old.`;

console.log(text);

//output - John is aged 37 years old

At this point, you should be able to run the quiz and see your questions

displayed.

You’re doing great!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 85 ~

Before we move on to the next step, let’s wrap our heads around arrays a

little better.

WHAT IS AN ARRAY?

The simplest way to describe it is, an array is a special variable, which can

hold more than one value. Okay, doesn’t sound too complicated, right?

So a variable can hold one value and an array can hold multiple values.

Great! So why use an array? Why not just store everything as variables?

When you are using a handful of values, for instance:

let colour1 = "Red";

let colour2 = "Green";

let colour3 = "Blue";

Variables could work just fine. However, now imagine you need to use

500 values or even 1000. Our list would be very long and all of the

variable names would be difficult to remember.

An array can hold many values under a single name, and you can access

the values by referring to an index number.

For example:

const colours = ["Red", "Green", "Blue"];

It is a common practice to declare arrays with the const keyword.

Now if we want to access any of our colours we only have to remember

one variable name, instead of three. Each of the values can be accessed

using its index number.

let colour = colours[0]; //Index position 0 is "Red"

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 86 ~

The index always begins at 0 and for each additional value added to the
array, the index will increment by 1.

It is also easy to change the values in an array by simply assigning a new

value, like so:

colours[0] = "Pink";

Now our array would look like this:

const colours = ["Pink", "Green", "Blue"];

There’s loads of other cool stuff we can do with arrays.

Finding the length of an array:

console.log(colours.length);// Returns a value of 3

Finding items in an array:

console.log(colours.indexOf("Blue")); // Returns a value of 2

Adding items.

colours.push("Black");//Adds "Black" to the end of the array

colours.unshift("Black");//Adds "Black" to the beginning of the array

Let’s stick with adding “Black” to the end. Now we have:

const colours = ["Pink", "Green", "Blue", "Black"];

Removing items:

colours.pop();//Removes last item

colours.shift();//Removes first item

colours.splice(index, 2);//Removes item at index 2

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 87 ~

Accessing every item:
const colours = ["Pink", "Green", "Blue", "Black"];

for (const colour of colours) {

 console.log(colour);

}

Splitting an array, in this case by the (,) delimiter:

const myData = colours.split(',');

Joining an array:

const myNewString = colours.join(',');

//Or another simpler way

colours.toString();

The output returned from both of these is the same:

Pink, Green, Blue, Black

There is one final point I wish to make about arrays, in our example, each
item is a string, but in an array, we can store various data types:

 strings

 numbers

 objects

 and even other arrays

We can also mix data types in a single array — we do not have to limit
ourselves to storing only numbers in one array and in others only strings.

There is much more we could look at regarding arrays, but that is beyond
the scope of this book. Hopefully now though, you should feel clearer
about arrays and their use.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 88 ~

Before you move on to the next step, have a quick break.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 89 ~

STEP❼ - THE SHOW RESULTS FUNCTION

Let’s fill in the code we need for our showResults function. Update your

function with the code below and save (CTRL + S):

function showResults(){

 const answerBoxs = quizBox.querySelectorAll('.answers');

 let numCorrect = 0;

 myQuestions.forEach((currentQuestion, questionNumber) => {

 const answerBox = answerBoxs[questionNumber];

 const selector = `input[name=question${questionNumber}]:checked`;

 const userAnswer = (answerBox.querySelector(selector) || {}).value;

 if(userAnswer === currentQuestion.correctAnswer){

 numCorrect++;

 answerBoxs[questionNumber].style.color = 'green';

 }

 else{

 answerBoxs[questionNumber].style.color = 'red';

 }

 });

 resultsBox.innerHTML = `${numCorrect} out of ${myQuestions.length}`;

}

As usual, let’s break it down.

function showResults(){

//Code to execute

}

Firstly, we declare our function which wraps around the code to be

executed using curly braces { and }.

Inside the function, our first job is grab all of the answer boxes from our

quiz:

const answerBoxs = quizBox.querySelectorAll('.answers');

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 90 ~

Next, we need to keep track of the user’s answers. To do so we must first

set the users score (number of correct answers) to 0, like so:

let numCorrect = 0;

Next, for each question, we need to find the selected answer, check if the

answer is correct, unanswered, or incorrect, and then format the output

accordingly. Green for correct or Red for a missing or incorrect answer.

This is all done inside a forEach Loop, like so:

//For each question execute the code within the loop

 myQuestions.forEach((currentQuestion, questionNumber) => {

//Determine the selected answer

 const answerBox = answerBoxs[questionNumber];

 const selector = `input[name=question${questionNumber}]:checked`;

 const userAnswer = (answerBox.querySelector(selector) || {}).value;

//Set the colour of the answers based on the users answer

 if(userAnswer === currentQuestion.correctAnswer){

 numCorrect++;

 answerBoxs[questionNumber].style.color = 'green';

 }

 else{

 answerBoxs[questionNumber].style.color = 'red';

 }

//close the forEach Lopp

 });

Finally, display the results. How many correct answers out of total

questions:

resultsBox.innerHTML = `${numCorrect} out of ${myQuestions.length}`;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 91 ~

Okay, some of this code we haven’t seen before. Let’s look a little deeper.

 const answerBox = answerBoxs[questionNumber];

//Look inside the amswerBox for the current question

 const selector = `input[name=question${questionNumber}]:checked`;

//Define a CSS selector that will allow us to find which radio button has

been checked by the user

 const userAnswer = (answerBox.querySelector(selector) || {}).value;

//Determine which radio button has been checked and get the value of the

answer or || if no value exists, an empty object {}.

Next, we have a conditional, if-else statement. These can be much more

complex, but what we have is very straightforward.

 We are using if to specify the block of code to be executed if the

specified condition is true

 We are using else to specify the block of code to be executed if the
same condition is false

if (condition) {

// block of code to be executed if the condition is true

} else {

// block of code to be executed if the condition is false
}

In our case we are doing two things:

 We are simply changing the text colour of our answers, depending

on the condition met.

 We are adding 1 to the variable numCorrect for a correct answer.
 if(userAnswer === currentQuestion.correctAnswer){

 numCorrect++;

 answerBoxs[questionNumber].style.color = 'green';

 } else {

 answerBoxs[questionNumber].style.color = 'red';

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 92 ~

STEP❽ - SHOW EACH QUESTION ON ITS OWN PAGE

Okay, in this step we are going to be doing a little catch-up. We have

already set a few things in place in our CSS and our buildQuiz(){} function.

As a quick reminder, we wrapped our output inside a <div> with a class of

slide.

<div class="slide">

 //Output

</div>

And we applied some styles in our CSS for transitioning from one slide to
the next:
.slide{

 position: absolute;

 left: 0px;

 top: 0px;

 width: 100%;

 z-index: 1;

 opacity: 0;

 transition: opacity 0.5s;

}

.active-slide{

 opacity: 1;

 z-index: 2;

}

Here we can see that the active-slide has an opacity of 1 or another way

of putting it 100% visible, while our other slides have an opacity of 0, in

other words invisible. Plus, we have stacked the active slide on top of the

other slides using the z-index command. The active slide is 2, while the

other slides are 1.

That part is pretty straight forward. Now let’s take a look at the logic that

makes it all happen.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 93 ~

Open ‘app.js’ and add the following code just after the showResults(){}

function:

 function showSlide(n) {

 slides[currentSlide].classList.remove('active-slide');

 slides[n].classList.add('active-slide');

 currentSlide = n;

 if(currentSlide === 0){

 previousButton.style.display = 'none';

 }

 else{

 previousButton.style.display = 'inline-block';

 }

 if(currentSlide === slides.length-1){

 nextButton.style.display = 'none';

 submitButton.style.display = 'inline-block';

 }

 else{

 nextButton.style.display = 'inline-block';

 submitButton.style.display = 'none';

 }

 }

 function showNextSlide() {

 showSlide(currentSlide + 1);

 }

 function showPreviousSlide() {

 showSlide(currentSlide - 1);

 }

Then after the buildQuiz(); function call, add the following:

 buildQuiz();// Add the following code after this function call

 const previousButton = document.getElementById("previous");

 const nextButton = document.getElementById("next");

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 94 ~

 const slides = document.querySelectorAll(".slide");

 let currentSlide = 0;

 showSlide(currentSlide);

Finally, add the following at the end of the script:

 submitButton.addEventListener('click', showResults);

// Add the following after this line of code

 previousButton.addEventListener("click", showPreviousSlide);

 nextButton.addEventListener("click", showNextSlide);

Save your file (CTRL + S).

Let’s have a closer look at the logic here:

function showSlide(n) {

// Note! We are passing the value ‘n’ into this function. The value ‘n’

will be used to represent the value of the current slide.

 slides[currentSlide].classList.remove('active-slide');

//Hide the current slide by removing the active-slide class

 slides[n].classList.add('active-slide');

//Show the new slide by adding the active-slide class for slide n

 currentSlide = n;

//Update the current slide number

 if(currentSlide === 0){

//If we’re on the first slide

 previousButton.style.display = 'none';

//Hide the previous slide button

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 95 ~

} else{

 previousButton.style.display = 'inline-block';

//Otherwise, display the previous button

 }

 if(currentSlide === slides.length-1){

//If we’re on the last slide

 nextButton.style.display = 'none';

//Don’t display the next button

 submitButton.style.display = 'inline-block';

//Instead, display the submit button

 }

 else{

 nextButton.style.display = 'inline-block';

//Otherwise, display the next button

 submitButton.style.display = 'none';

//And, don’t display the submit button

 }

You’re doing great! Next, let’s take a look at the showNextSlide() and

showPreviousSlide() functions:

 function showNextSlide() {

 showSlide(currentSlide + 1);

//Increment current slide by one

 }

 function showPreviousSlide() {

 showSlide(currentSlide - 1);

//Decrement current slide by one

 }

This logic is called when we click the ‘Next Question’, and ‘Previous

Question’ buttons respectively, using the event listeners at the end of the

code.

 previousButton.addEventListener("click", showPreviousSlide);

//Listen for a previosButton click. If clicked call the showPreviousSlide

function

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 96 ~

 nextButton.addEventListener("click", showNextSlide);

//Listen for a nextButton click. If clicked call the showNextSlide

function

Unlike when calling a function normally, we forgo using the parenthesis ()

when we call a function in this way.

Finally in this step, it is sometimes recommended to wrap your JavaScript

code in an IIFE, an immediately invoked function expression. This is a self-

calling function. It runs as soon as you define it. This will keep your

variables out of global scope to ensure it doesn’t interfere with other

scripts running on the page. There are occasions when you want your

variables in global scope though, as we’ll see a bit later.

The syntax is as follows:

(function(){

 // put the rest of your code here
})();

Okay, with that done your quiz should now be up and running.

Wouldn’t it be great if we included a countdown timer and some

feedback for the user so they know how many questions there are and

how many are left? Let’s move on.

STEP❾ - ADDING A COUNTDOWN TIMER

Following the <div id="results"></div> in your ‘quiz_app.html’ file, add
the following mark-up:

 <h2>Countdown Timer</h2>

 <div id="clockdiv">

//The wrapper where the countdown timer will reside

 <div>

 <div class="smalltext">Minutes</div>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 97 ~

// A label to show where ‘Minutes’ will be displayed

//This is where the number of minutes for our countdown will reside

 </div>

 <div>

 <div class="smalltext">Seconds</div>

// A label to show where ‘Seconds’ will be displayed

//This is where the number of seconds for our countdown will reside

 </div>

 </div>

Save the file (CTRL + S)

This mark-up is where we will display our countdown clock. Next, add the

following line of code, just inside the closing body tag </body>, ensuring it

is after the reference for our ‘app.js’ file.

<script src="js/countdown.js"></script>

This will make the necessary reference to our countdown script, in the

same way, we referenced our ‘app.js’ file.

Next, open the ‘app.css’ file and add the following code to the bottom of

the file (excluding the comments (//…)), then save the file (CTRL + S):

 /* ================= COUNTDOWN TIMER =================== */

 h2{

 color: #333;//Set text colour

 font-weight: 100;// Set font thickness

 font-size: 40px;// Set font size

 margin: 40px 0px 20px; // Set margins (TRBL)

 }

 #clockdiv{

 font-family: sans-serif;//Set font face

 color: #fff;//Set text colour to white

 display: inline-block; // Set display property

 font-weight: 100;//Set font thickness

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 98 ~

 text-align: center;//Align text to the centre

 font-size: 30px;//Set font size

 }

 #clockdiv > div{

 padding: 10px;//Set space around the element to 10 pixels

 border-radius: 100px; // Make borders rounded

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999)); // Set background to a graduated colour

 display: inline-block; // Set display property

 border: solid 1px #333;

//Make a solid border around the element of 1 pixel wide and in a dark

grey colour

 width: 100px;//Set the width of the element

 height: 100px;//Set the height of the element

 }

 #clockdiv div > span{

 padding: 15px;//Set space around the element to 15 pixels

 border-radius: 3px;//Make border slightly rounds at corners

 background: #333;//Set background colour to dark grey

 display: inline-block;//Set display property to inline

 }

 .smalltext{

 padding-top: 3px;//Set space at the top of the element to 3 pixels

 font-size: 16px;//Set the font size to 16 pixels

 }

Great job!

Now, make a new file called ‘countdown.js’ and save it in the ‘js’ folder.

Add the following code (minus the comments (//…)), and then save the
file (CTRL + S). Of course, you can add your own comments, but they
should be much more succinct than these fuller explanations, and the
general rule of thumb, comments should come before the code, not
afterwards.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 99 ~

function getTimeRemaining(endtime) {

//Open function to get the remaining time with a parameter of ‘endtime’

so that we can return the result and use it outside of this function

 const total = Date.parse(endtime) - Date.parse(new Date());

//Calculate the end time minus the time now using the computer clock

 const seconds = Math.floor((total / 1000) % 60);

//Calculate the number of seconds using our ‘total’ variable. In

JavaScript 1000 is equal to 1 second. Since we’ll be setting our timer to

3 minutes, that equals 180000 (180 seconds x 1000). As you can see here

we are converting the total into seconds (total / 1000), then the %

(modulus) 60 ensures the result returned in whole seconds.

 const minutes = Math.floor((total / 1000 / 60) % 60);

//Here we are doing the same as above with the addition of a further /

60, or in other words converting total into the number of minutes.

 return { //This then returns the results

 total,

 minutes,

 seconds

 };

}

function initializeClock(id, endtime) {

//Open a function to initialise the clock

 const clock = document.getElementById(id);

//Reference the ID of the clock

 const minutesSpan = clock.querySelector('.minutes');

//Reference the minutes class

 const secondsSpan = clock.querySelector('.seconds');

//Reference the seconds class

 function updateClock() {

//Open the update clock function

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 100 ~

 const t = getTimeRemaining(endtime);

//Set t variable to the remaining time

 minutesSpan.innerHTML = ('0' + t.minutes).slice(-2);

//Dislay minutes in the minutes

 secondsSpan.innerHTML = ('0' + t.seconds).slice(-2);

//Display seconds in the seconds

 if (t.total <= 0) {

 clearInterval(timeinterval);

//If the total time is equal to or less than 0 reset the clock

 }

 }

 updateClock();

//Call the updateClock function

 const timeinterval = setInterval(updateClock, 1000);

//Update the clock every second (1000 = 1 second)

}

const deadline = new Date(Date.parse(new Date()) + 3 * 60 * 1000);

initializeClock('clockdiv', deadline);

//Set the countdown timer to 3 minutes and initialise the clock

 Here we are calculating the date/time right now and then
adding 3 minutes

 (3 * 60 * 1000) means (3 x 60 x 1000) or in other words
180000.

 Then we send the value with our call to initialise the
clock initializeClock('clockdiv', deadline) so that the
initializeClock function knows where to start from.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 101 ~

Let’s see what we have so far:

Okay, looking pretty good, right?

 We’ve got a nice looking layout that works for a mobile phone

 We have our question wrapper

 We’re loading in our question bank

 We are taking user input and collecting their answers

 We can show results when the user submits the quiz

 We have a 3-minute countdown timer

So happens when the timer hits 00 00. Well, right now, nothing at all.
Let’s make it submit the quiz and show us our results.

 if (t.total <= 0) {

 clearInterval(timeinterval);

 ◄ Add a function call here to submit the quiz

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 102 ~

How do we do that?

Well, since we have ordered our JavaScript files in our ‘quiz_app.html’ to
load the questions and then the timer, we have access to all of the
functions within ‘app.js’ from ‘countdown.js’. Cool right! So all we need to
do is a normal function call, like this:

showResults();

So what are we doing here? When the timer is either less than (<) or
equal to (=) zero (0) we are clearing the timer and then showing the
results. Save your file and refresh your browser.

Ah, but it didn’t work. That’s simply because we have used an IIFE.
Sometimes an IIFE is great, other times it prevents us from accessing
variables globally, as we need to. Remove your IIFE, save the file, and run
your test again. Now you can see first-hand what an IIFE actually does.

If you’ve forgotten what the IIFE is, it’s simply this:

(function(){

 // put the rest of your code here
})();

Wrapped around your code. Simply remove it and save your file, then
refresh your browser.

Or we could of course still use the IIFE and copy and paste the countdown
script into our ‘app.js’ file and just have all of our logic in one longer
JavaScript file. However, when we are working with possibly hundreds of
functions, I find it better to structure your code in separate and
specifically named files. That way your code will be cleaner and easier to
bug fix. You will see exactly what I mean in our next exercise when we
start building our platform game.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 103 ~

Now you should have the following result:

Okay, so when the timer runs out we no longer need the buttons. We
should remove them to prevent further user input and add a try again
option for the user. We’ll need to add another button to our
‘quiz_app.html’ file and then update our ‘countdown.js’ file. We need to
add the JavaScript logic in the same place as our function call to submit
the quiz, like this:

 if (t.total <= 0) {

 clearInterval(timeinterval);

 showResults();

 submitButton.style.display = 'none';

 previousButton.style.display = 'none';

 nextButton.style.display = 'none';

 tryAgainButton.style.display = 'inline-block';

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 104 ~

And then open our ‘quiz_app.html’ file and add the following mark-up just
below the results <div>:

<button id="tryAgain"><p>Try Again</p></button>

But, we don’t want to show the button unless the timer is at 00 00. So we
also need to add another condition to if (t.total <= 0) { } to be able to
apply the logic for what happens when the clock is greater than 00 00.
This is simple since we have the logic for the true condition, the false is
just an else condition, like so:

 } else {

 tryAgainButton.style.display = 'none';

 }

This is telling the browser not to display the try again button unless the
timer is at zero - 0. This won’t work just yet though. We need to define
the button in the same way we defined the buttons in our ‘app.js’ file.
Due to TDZ, we need to define it before the function call is made to
inializeClock function, like so:

const tryAgainButton = document.getElementById("tryAgain");

Okay, so now the quiz control buttons are removed and we are displaying
our ‘Try Again?’ button. Great so far, but the button currently has no
functionality. To make the button interactive we need to make a function
that will run a block of code to make the button reset the quiz and then
add an event listener to have JavaScript listen for a button click, which we
will use to call our function. The event listener logic we have seen before
in the ‘app.js’ file. Add the following to the bottom of the ‘countdown.js’
file:

tryAgainButton.addEventListener("click", resetQuiz);

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 105 ~

As you can see, when the button is clicked we are calling a function called
‘resetQuiz’. Great!

Now let’s create that function:

function resetQuiz(){

 //reset quiz logic

}

Okay, so what does our reset quiz function need to do? For our purposes,
it simply needs to refresh the page, like this:

function resetQuiz(){

 location.reload();

}

JavaScript has a built-in method called reload(). Reload() does the same as
the reload button in your browser.

So what about the user knowing how many questions are left? Well, if you
use the same logic as we’ve used for the final results to find the length of
the question bank, we can inform the user how many questions there are
in a variety of ways. As we need to be conscious of available screen
space, I think it will work well to dynamically update the title, depending
on the question bank length. At the moment our web app is entitled
‘Question Time – The Quiz App’. How about we update that to:
 ‘[number of questions] Questions – The Quiz App’. So in my case, it would
read ‘20 Questions – The Quiz App’. Sounds spot on!

First, we need to create a new within the title <h1></h1>
and apply an ID to it. So why are we using a element and not a
<div>, for example? The tag is an inline container, whereas the
<div> is a block-level element. Meaning a <div> would make a new line,

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 106 ~

while keeps everything on the same line. So using a <div> would
scupper our desired layout.

Open the ‘quiz_app.html’ file and update the title to reflect the following:

 <div id="header">

 <h1> Questions
The Quiz App</h1>
 </div>

Since we have set an ID of ‘quizLength’, we can now use this in our
JavaScript. We want this to be present all of the time, so placement within
our code is important. Add the following to the ‘app.js’ file:

document.getElementById('quizLength').innerHTML = data.length;

Ensure it is placed after this:

 const myQuestions = [];

 for(i=0; i < data.length; i++){

 myQuestions.push(data[i]);
 }

Up to this point we have:

It’s looking great!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 107 ~

If you want to make the quiz easier or more difficult, try adjusting the
timer to more or less time.

const deadline = new Date(Date.parse(new Date()) + 3 * 60 * 1000);

initializeClock('clockdiv', deadline);

All you need to do is change the 3 to an alternative value. The 3 here
means 3 minutes, 2 would be 2 minutes, and so on. This is your quiz, have
fun, play around with it. Challenge your friends to complete your quiz.

I think now would be a great time for another break, before we move on
to the final part of this program. Allowing the user to add or delete
questions.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 108 ~

STEP❿ - ADDING USER ADMINISTRATION FUNCTIONS

Finally, we want the user to be able to add new questions and delete

existing ones. Essentially to be able to edit the quiz and make it their own.

We have a few questions we need to ask ourselves here:

1. How are we going to collect data from the user?

2. How do we add the user data to our JSON question bank?

3. How will we remove a question from the JSON question bank?

All good questions. In programming, there are always many ways to tackle

a problem. Let’s start by taking a look at question 1.

Something we haven’t used yet is HTML forms. HTML forms are the

obvious way to collect data from the user and allow us to make our data

collection more user-friendly. We know we need the following

information:

 The question

 Four possible answers

 The correct answer represented by a, b, c or d

Once again our design falls into three areas.

1. The view provided by our HTML

2. The styles and page formatting, provided by our CSS

3. The program logic, provided by our JavaScript.

We will design a new HTML page for this and then add appropriate page

links to allow the user to navigate between both. Then we will make a

new JavaScript file to accommodate the logic that will make it all function.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 109 ~

Considering our data capture requirements, our form might look

something like this:

Normally, when creating a program like this

you would use a database and server-side

languages, such as PHP or Node.js, etc.

However, this book is exploring the use of

HTML, CSS, and JavaScript, which are all

client-side technologies. We will be using

other techniques that will allow us to code

everything and run it locally in your browser,

without the use of any other outside technologies.

Client-side and Server-side:

Client-side and server-side are

sometimes referred to as front-

end and back-end. The client-

side of a website refers to the

web browser and the server-side

is where the data and source

code is stored.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 110 ~

For your information, there are many databases available. Some of the

most used and well-known are MySQL, MariaDB, and PostgreSQL. These

all use a specially developed language to query them called Structured

Query Language (or SQL, pronounced sequel). Then there is another

database type known as NoSQL databases, such as MongoDB, ApacheDB,

and Cassandra, which utilise alternative structures and query techniques,

such as the JSON-like data structure with MongoDB or CQL with

Cassandra.

For our purposes, we will be writing our questions into our JSON file

instead, but it is important for you to know that if you wanted to create a

program like this one and deploy it on a remote server, you would need

to use other technologies to maintain security over your code and data.

Using HTML, CSS, and JavaScript any user can access all of your code, just

by hitting ‘CTRL + U’ (‘Cmd + U’ on Mac), in many browsers or using the

menu and choosing the ‘view source’ option.

That said, the logic you’ll learn by doing it this way is a very valuable

learning exercise and the same methods can be used in many of your

future projects, perhaps with the addition of server-side technologies to

better handle security aspects, etc.

Server-side languages are translated by the browser and displayed as

HTML, therefore the user can't read the actual code. If you want to learn

more about that, I would highly recommend my book series called, ‘Web

Design and Development – The Right Way!’.

 ….and many more

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 111 ~

HOW TO CONSTRUCT OUR HTML FORM

Once again, open your chosen coding editor and make a new file called

‘add_questions.html’. Then add the following mark-up and save the file in

the ‘web_app’ directory (CTRL + S).

<html>

<head>

 <title>Quiz Bank Editor</title>

 <meta name='viewport' content='width=device-width, initial-scale=1'>

 <link rel='stylesheet' type='text/css' media='screen'

href='css/app.css'>

 <script type="text/javascript" src="json/questions.json"></script>

</head>

<body>

 <div id="header">

 <h1>Quiz Bank
Add A Question: </h1>

 </div>

 <div class="quiz-wrapper">

 <form id="addQuestion" onsubmit="submitForm(event)">

 <label class="formLabel">Question Number:</label>

 <label class="formLabel">Question:</label>

 <textarea maxlength="200" cols="50" rows="5" class="formArea"

placeholder="Add your question here. Include a question mark (?) at the

end." id="q" name="q" required></textarea>

 <label class="formLabel">Answer A:</label>

 <input type="text" maxlength="100" size="100"

class="formInput" id="a" name="a" required>

 <label class="formLabel">Answer B:</label>

 <input type="text" maxlength="100" size="100"

class="formInput" id="b" name="b" required>

 <label class="formLabel">Answer C:</label>

 <input type="text" maxlength="100" size="100"

class="formInput" id="c" name="c" required>

 <label class="formLabel">Answer D:</label>

 <input type="text" maxlength="100" size="100"

class="formInput" id="d" name="d" required>

 <label class="formLabel">Correct Answer:</label>

 <select id="ca" name="ca" class="formSelect" required>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 112 ~

 <option value="" selected disabled> Choose </option>

 <option value="a"> - A -</option>

 <option value="b"> - B -</option>

 <option value="c"> - C -</option>

 <option value="d"> - D -</option>

 </select>

 <button id="submitQuestion"><p>Submit

Question</p></button>

 <button id="saveQuestionBank"><p>Save Question

Bank</p></button>

 </form>

 </div>

 <div id="footer">

 <h5>Written by Garry Owen © Copyright December 2021</h5>

 </div>

 <script src='js/addquestions.js'></script>

</body>
</html>

 You’ve seen some of this mark-up before, so instead of repeating those
aspects, let’s concentrate on the <form> itself.

 <form id="addQuestion"> …. </form>

Firstly, we’ve opened a new form element and closed it at the end of the
form structure. We have added an ID to the form so that we can
manipulate it with our JavaScript code and/or our CSS.

<label class="formLabel">Question:</label>

Next, we have a form label <label></label>. We have given each label a

class so that we can choose styling rules with our CSS. The text between

the <label></label> tags will be displayed (rendered) in the users view.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 113 ~

The
 element simply means bridge return. Its function is to go to a

new line, before rendering the next element. I have added this here for

the sake of simplicity, we could get the same effect by adding necessary

rules to our CSS.

Each of the label elements has pretty much the same structure, shy of a

 here and there.

<input type="text" maxlength="" size="" class="" id=" " name="" required>

Next, I want to discuss the most common type of form input. Inside each

form input we can set various rules. Some rules are dependent on the

type of <input> we choose, while others apply to any of the available

options.

First, we need to set the input type. Here we have chosen “text”,

however, there are many input types to choose from. The number input

type allows only numbers as input, text allows text and numbers. We

won’t explore them all here, but you can see the range of options in the

list below and over the page:

INPUT TYPE FORM ATTRIBUTES

INPUT TYPES
<input type="button">
<input type="checkbox">
<input type="color">
<input type="date">
<input type="datetime-local">
<input type="email">
<input type="file">
<input type="hidden">

<input type="password">
<input type="radio">
<input type="range">
<input type="reset">
<input type="search">
<input type="submit">
<input type="tel">
<input type="text">

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 114 ~

<input type="image">
<input type="month">
<input type="number">

<input type="time">
<input type="url">
<input type="week">

As can be seen, there are many HTML form input types. We will explore

the ones we are using in greater detail as we progress.

OTHER FORM ATTRIBUTES

ATTRIBUTE VALUE DESCRIPTION

name text Name of the input element.
value text Value of the input element.

id identifier Defines a unique identifier for the
input.

class classnames Sets one or more CSS classes to be
applied to the input.

style CSS-styles Sets the style for the input.

data-* value Defines additional data that can
be used by JavaScript.

hidden hidden Specifies whether the input is
hidden.

title text Sets a title that displays as a
tooltip.

tabindex index Sets a tab sequence relative to the
other elements.

checked checked For types: checkbox or radio.
Makes the option checked or
chosen.

placeholder text A short hint which describes the
expected value

maxlength number The maximum number of
characters allowed

required no value Sets the input to the required field

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 115 ~

readonly readonly Make input read-only

disabled disabled Disables input element
autofocus no value Sets the focus on the element

after page loads
autocomplete on | off Presents the user with previously

entered values
form form-id Refers to the id of the form the

<input> element belongs to
formaction URL For types: submit image. URL or

path of the file the submitted data
will be processed

formtarget _blank
_self
_parent
_top
framename

For types: submit and image.
Indicates where the response
should be displayed

formenctype application/x-
www-form-
urlencoded,
multipart/form-
data,
text/plain

For types: submit image. How the
form data submitted shall be
encoded to the server.

formmethod get
post

For types: submit and image. The
HTTP method for sending form
data

formnovalidate formnovalidate Avoids the form being validated
after submission

accept file-extension
audio/*
video/*
image/*
media_type

For type: file. Indicates what file
types user can pick to upload

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 116 ~

min number
date

Minimum value

max number
date

Maximum value

step number
any

The interval between legal
numbers

multiple multiple Allows users to choose more than
one value from the selection

pattern regexp A regular expression that an
<input> element's value is
checked against

size number Input control's width in number of
characters

width pixels Width of the input element in
pixels. Used by image input types.

height pixels Height of element in pixels. Used
by image input types

list datalist-id <datalist> element that contains
pre-defined options for an <input>
element

dirname inputname Text direction to be submitted

As with input types, there are also a great many HTML form attributes to
choose from, with many different uses. We will explore the ones we need
in more detail, as we progress.

Next we have <textarea></textarea> mark-up.

<textarea maxlength="200" cols="50" rows="5" class="formArea"

placeholder="Add your question here. Include a question mark (?) at the

end." id="q" name="q" required></textarea>

Okay, this is slightly different than a form input in that it can occupy more

than one line, and as its name suggests it has an input type of text pre-set.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 117 ~

maxlength="200" is just the same as with the last input element. It

restricts the number of characters, in this case, to 200.

cols="50" is setting our <textarea> to 50 characters wide.

rows="5" is setting our <textarea> height to 5 characters tall.

class="formArea" is what we will use as a reference for our CSS rules.

placeholder="Add your question here. Include a

question mark (?) at the end." a string that provides a brief

hint to the user as to what kind of information is expected in the field. In

our case, I wanted to ensure the user adds a question mark.

id="q" is an ID we can use with either our CSS or JavaScript. In this case,

it is intended for use with our JavaScript. The ‘q’ simply stands for

‘question’.

Finally, name="q", is the name of the input element and can be used to

pass data from a form as reference. Again, more on that later.

Unlike with an <input>, we close a textarea with the close </textarea> tag.

The next 4 inputs are almost identical, with the exception of changing the

values to a, b, c and d respectively:

<input type="text" maxlength="100" size="100" class="formInput" id="a"

name="a" required>

So we’ve restricted the user to text input only, then we have

maxlength="100". That will restrict the user input to a maximum of 100

characters.

Next, we have size="100". That sets the size (width) of the user input

field in the number of characters.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 118 ~

Then we have class="formInput". This is what we will use as a

reference for our CSS rules.

Next, we have an ID of ‘a’(id="a"). That is an ID we can use with either

our CSS or JavaScript. In this case, it is intended for use with our

JavaScript. ‘a’ simply stands for answer a. We can name classes and IDs

pretty much anything we want, outside of existing keywords and tags

within our code or mark-up.

Then we have name="a", this is the name of the input element and can

be used to pass data from a form as reference. We’ll see more on that

later.

Finally, we have the required attribute. Which tells the browser that

the form element MUST be completed by the user, otherwise the form

will not submit and the user will be prompted for input, like this:

We’ll bypass the <label> and look at the next input. This time we have a

different type of input, <select></select>.

 <select id="ca" name="ca" class="formSelect" required>
 <option value="" selected disabled> Choose </option>
 <option value="a"> - A -</option>
 <option value="b"> - B -</option>
 <option value="c"> - C -</option>
 <option value="d"> - D -</option>
 </select>

The attributes the <select> carries are much the same as before, ID,

name, class and required, so I won’t go over those again.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 119 ~

Next, we have dropdown options enclosed in <option></option> tags.

Each one of these passes its value when chosen and the form submitted.

You’ll notice the first option is a little different:

<option value="" selected disabled> Choose </option>

The settings here make it impossible to choose (disabled) and also

show it as the current selection (selected). That means that the user is

presented with the word ‘Choose’ in the dropdown.

Great stuff! Finally we have a <button> to submit our form and parse the

data within the form:

<button id="submit"><p>Submit Question</p></button>

And then another, to download our question bank file:

<button id="downloadQuestionBank"><p>Download Question Bank</p></button>

These are in the same format as all of the previous buttons we have

created and therefore they will automatically be styled the same because

we’ve referenced our CSS in the head of the mark-up.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 120 ~

I think it’s that time again…. Or do I just drink too much coffee? 

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 121 ~

STYLING OUR HTML FORM

Okay we already have our CSS file created, so open ‘app.css’ and add the

following code to the bottom of the file:

 /* =========================== FORM STYLES ======================= */

 .formLabel{

 color: #333;

 font-size: 16px;

 font-weight: bold;

 width: 10%;

 }

 .formArea{

 color: #333;

 font-size: 25px;

 font-weight: bold;

 width: 80%;

 }

 .formInput{

 color: #333;

 font-size: 25px;

 font-weight: bold;

 width: 50%;

 }

 .formSelect{

 color: #333;

 font-size: 25px;

 font-weight: bold;

 width: 25%;

 text-align: center;

 }

Notice here, we have some of our rules repeated in more than one class. I

am showing you this on purpose because you should always be thinking,

how can I make my code cleaner and more optimised? This won’t only

make your code run more efficiently, but it will be easier to read.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 122 ~

In these circumstances, firstly ask yourself, what rules apply to everything

in the form?

 form{

 color: #333;

 font-weight: bold;

 }

Next, are there any rules that apply to multiple classes (or IDs /

Keywords)?

 .formArea, .formInput, .formSelect{

 font-size: 25px;

 }

Next, what’s left over?

 .formArea{

 width: 80%;

 }

 .formInput{

 width: 50%;

 }

 .formSelect{

 width: 25%;

 text-align: center;

 }

 .formLabel{

 font-size: 16px;

 width: 10%;

 }

Ensure you have optimised it as much as you can and then bring it all

together, and add the code to the end of your ‘app.css’ file.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 123 ~

You should have something that looks like this:

 form{

 color: #333;

 font-weight: bold;

 }

 .formLabel{

 font-size: 16px;

 width: 10%;

 }

 .formArea, .formInput, .formSelect{

 font-size: 25px;

 }

 .formArea{

 width: 80%;

 }

 .formInput{

 width: 50%;

 }

 .formSelect{

 width: 25%;

 text-align: center;

 }

In this case, not a great amount of fewer lines of code, but I’m sure you

get the idea. We started with 26 lines and reduced it to 21 – not bad! Save

your file (CTRL + S). Let’s move on…

GET DATA FROM THE HTML FORM AND ADD IT TO THE JSON FILE

Let’s think about the title of this section. It has 2 parts but requires 3

steps.

1. Get data from the HTML form

2. Convert it to JSON format

3. Add it to the JSON file

Make a new file called ‘addquestions.js’ and save it in the ‘js’ folder.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 124 ~

In the same way, we’ve tackled our JavaScript logic before, we will place

each element for what we want to achieve into JavaScript functions.

function submitForm(event){

 event.preventDefault();

}

The first function is combined with some code added to the HTML form
tag. I.E. onsubmit="submitForm(event)". Together they prevent
the form from submitting in the default fashion and allow us to be able to
gather the form data in the next function.

Why do we need to do this? By default, when a form is submitted the web
page is refreshed, and therefore the data is cleared.

function getMyData(){

 const question = document.getElementById("qn").value +". " +

document.getElementById("q").value;

 const a = document.getElementById("a").value;

 const b = document.getElementById("b").value;

 const c = document.getElementById("c").value;

 const d = document.getElementById("d").value;

 const correctAnswer = document.getElementById("ca").value;

 const newData = { question, answers: { a, b, c, d }, correctAnswer }

 if(question != "" && a != "" && b != "" && c != "" && d != "" &&

correctAnswer != ""){

 questionBank.push(newData);

 document.getElementById('qCount').innerHTML =

questionBank.length;

 document.getElementById("addQuestion").reset();

 }

 return questionBank;

}

We are gathering the values here from our form, one by one, and then
putting them back together in the object form that we require. Each form

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 125 ~

element is attained using the attributed ID and the value is stored in a
variable. E.G.
const a = document.getElementById("a").value;

//store the value from the input with the ID ‘a’, in a variable named

‘a’. We have repeated this structure to gather the data from all form

fields.

const newData = { question, answers: { a, b, c, d }, correctAnswer }

//form our object using the collected values

 if(question != "" && a != "" && b != "" && c != "" && d != "" &&

correctAnswer != ""){

//here we have a conditional which is only true if all form fields have a

value when the form is submitted

 questionBank.push(newData);

//pushes our new question, answers and correct answer (newData) into an

array named questionBank

 document.getElementById('qCount').innerHTML =

questionBank.length;

//displays the current number of questions in the bank in the <h1> title

element

 document.getElementById("addQuestion").reset();

//clears the form ready for another question to be added

 }

//closes the conditional

return questionBank;

//return the updated question bank, making it accessible outside of the

function

}

//Finally, we close the function

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 126 ~

Next, we have a function that is called when we save our question bank to
local storage. This will allow us to update the question bank and display
the newly updated question set to the user. However, to do that we’ll
need to make some small changes to our ‘app.js’ file too. For now,
though, let’s take a look at our saveMyFile function:

function saveMyFile(){

 localStorage.setItem("questionBank", JSON.stringify(questionBank));

 location.replace("quiz.html")

}

This function is very simple. We are setting a local storage item with the
name "questionBank" and inserting our question bank into it after
converting it to a JSON string JSON.stringify(questionBank)

WHAT IS LOCAL STORAGE?

The localStorage object allows you to save key/value pairs in the browser.

It stores data with no expiration date. This means the data is not deleted

when the browser is closed and will be available for future use. The

concept behind it is very simple. The syntax is as follows:

localStorage.setItem(key, value); // Store data

localStorage.getItem(key, value); //Retrieve data

localStorage.removeItem(key); //Remove data

An example of its usage is shown below:

localStorage.setItem("fullname", "Garry Owen"); //Sets fullname

localStorage.getItem("fullname");// Returns Garry Owen

localStorage.removeItem("fullname");// Clears storage

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 127 ~

In the last part of our code we have our variable declarations and event
listeners, to listen for when our form is submitted and when the save
question bank button is clicked.

const addQuestionButton = document.getElementById("submitQuestion");

//reference the submitQuestion button and store it in a variable called

addQuestionButton

const saveButton = document.getElementById("saveQuestionBank");

//reference the saveQuestionBank button and store it in a variable called

bankButton

const questionBank = [];

//create a new empty array called questionBank

const newObject = localStorage.getItem("questionBank");

//retrieve the question bank from localStorage

let dataStored = JSON.parse(newObject);

//parse the JSON data into a new JavaScript object

 if(dataStored != ""){

//if dataStored is not empty…

 for(i=0; i < dataStored.length; i++){

 questionBank.push(dataStored[i]);

 }

//iterate through the dataStored array and push each question into the

questionBank array

 } else {

 for(i=0; i < data.length; i++){

 questionBank.push(data[i]);

 }

//otherwise, iterate through the data array (brought in in the

<head></head> section of our code) and push each question into the

questionBank array

 }// close the conditional

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 128 ~

document.getElementById('qCount').innerHTML = questionBank.length;

//update the <h1> title tag with the current number of questions in our

question bank

addQuestionButton.addEventListener("click", getMyData);

//Listen for the submit form button and when clicked call or invoke the

getMyData() function

saveButton.addEventListener("click", saveMyFile);

//Listen for the save question bank button and when clicked call (invoke)

the saveMyFile() function

Okay, so we can now add new questions and save them to local storage.

What’s left to do?

 We need a way to remove unwanted questions

 We need a way for the user to access the admin functions

 We need to give our quiz access to local storage updates

CONSTRUCTING THE ‘REMOVE QUESTIONS ’ FORM MARK-UP

Okay, so we already know that push() adds data to the end of an array,
and pop() will remove the last item of an array.

We have already added our new questions to the end of the array, but
unlike with adding questions, a user will not only want to be able to
remove the last one. In fact, we need to be able to remove multiple
questions. From a user’s perspective, it would be easier if all questions
were displayed on a list and they could click a tick box and have a button
with the function of removing all of the questions selected in one hit.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 129 ~

Like this:

Okay, let’s build the HTML mark-up. Make a new file called
‘remove_questions.html’ and save it in the main web app directory. Add
the following code and then save (CTRL + S).

<html>

<head>

 <title>Quiz Bank Editor</title>

 <meta name='viewport' content='width=device-width, initial-scale=1'>

 <link rel='stylesheet' type='text/css' media='screen'

href='css/app.css'>

 <script type="text/javascript" src="json/questions.json"></script>

</head>

<body>

 <div id="header">

 <h1>Quiz Bank
Remove Questions</h1>

 </div>

 <div class="wrapper">

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 130 ~

 <form id="removeQuestion" onsubmit="submitForm(event)">

 <label class="formLabel">Question Bank:</label>

 <!-- Add all questions here with check boxes -->

 <div id="showQstn"></div>

 <button id="removeQuestions"><p>Remove Selected

Questions</p></button>

 <button id="saveQuestions"><p>Save Question Bank</p></button>

 </form>

 </div>

 <div id="footer2">

 <h5>Written by Garry Owen © Copyright December 2021</h5>

 </div>

 <script src='js/removequestions.js'></script>

</body>

</html>

Pretty straightforward, right? You’ve seen pretty much everything here
before. However, let’s take a deeper look at the form to understand
what’s going on.

<form id="removeQuestion" onsubmit="submitRemoveForm(event)">

 <label class="formLabel">Question Bank:</label>

 <!-- Add all questions here with check boxes -->

 <div id="showQstn"></div>

 <button id="removeQuestions"><p>Remove Selected

Questions</p></button>

 <button id="saveQuestions"><p>Save Question Bank</p></button>

</form>

Aside from the element and attributes that you have already seen, the
main difference here is that we intend to populate the form inside our
show question div <div id="showQstn"></div> using our JavaScript
coding. Therefore, what’s left is a very simple form. The other attributes
have had their id names changed to ensure we don’t get any conflict
issues from other scripts.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 131 ~

STYLING THE ‘REMOVE QUESTIONS ’ FORM

Open the ‘app.css’ file and add the following to the bottom:

 #showQstn {

 text-align: left;

 display: block;

 margin: 0 auto 0 auto;

 width: 420px;

 }

 #showQstn label:first-of-type{

 margin-left: 10px;

 }

 .chk_butn {

 transform: scale(200%);

 margin: 10px 30px 5px -20px;

 }

 .wrapper{

 position: relative;

 margin: 30px 0 20px 0;

 }

 #footer2 {

 position: relative;

 bottom:0;

 width:100%;

 height:40px;

 text-shadow: 0px 1px 0px #fff;

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999));

 }

 #footer2 h5{

 text-align: center;

 padding-top: 10px;

 font-size: 15px;

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 132 ~

Okay, apart from a couple of rules, you have seen all of this CSS by now. In
the vein of avoiding too much repetition, I’ll explain just those
differences.

margin: 0 auto 0 auto;

We’ve seen margin before, but ‘auto’ is something we haven’t explored.
Used together with ‘display: block;’ and ‘width: 420px;’ this displays the
element at the centre of the display, as a block.

 #showQstn label:first-of-type{

 margin-left: 10px;

 }

label:first-of-type - this sets rules only for the first label element

The rest we’ve already seen. However, note we have made another
wrapper class and another footer class. This is because existing rules
won’t work for our new HTML page. That is because the layout here is
longer (potentially much longer depending on how many questions the
user decides on) than the original structure for our question and answer
slides.

UPDATING QUIZ JAVASCRIPT FILE TO ACCOMMODATE LOCAL STORAGE

Open ‘app.js’ and exchange this code:

const questionBank = [];

 for(i=0; i < data.length; i++){

 questionBank.push(data[i]);

 }

document.getElementById('quizLength').innerHTML = data.length;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 133 ~

with this:

 const myQuestions = [];

 const newObject = localStorage.getItem("questionBank");

 let dataStored = JSON.parse(newObject);

 if(dataStored != ""){

 for(i=0; i < dataStored.length; i++){

 myQuestions.push(dataStored[i]);

 }

 document.getElementById('quizLength').innerHTML =

dataStored.length;

 } else {

 for(i=0; i < data.length; i++){

 myQuestions.push(data[i]);

 }

 document.getElementById('quizLength').innerHTML = data.length;

 }

This works exactly the same way as explained in the ‘addquestions.js’ file,
with the exception that we are updating the ‘quizlength’ attribute
depending on whether we are using local storage ‘dataStored’ or the
JSON file we created for our questions ‘data’, as below:

document.getElementById('quizLength').innerHTML = dataStored.length;

document.getElementById('quizLength').innerHTML = data.length;

This simply updates our title with the number of questions.

BUILDING THE JAVASCRIPT TO DELETE QUESTIONS

Make a new file called ‘removequestions.js’ and save it in the ‘js’ folder,

then add the following code and save (CTRL + S).

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 134 ~

function submitRemoveForm(event){

 event.preventDefault();

}

function showQuestions(){

const questionHolder = document.getElementById('showQstn');

questionToShow = [];

const newObject = localStorage.getItem("questionBank");

let dataStored = JSON.parse(newObject);

 if(dataStored != ""){

 for(i=0; i < dataStored.length; i++){

 questionToShow.push(

 `<label>

 <input type="checkbox" name="${i}" value="${i}"

class="chk_butn">

 ${i+1}. ${dataStored[i].question.substring(0, 32)}...

 </label>
`

);

 }

 } else {

 for(i=0; i < data.length; i++){

 questionToShow.push(

 `<label>

 <input type="checkbox" name="${i}" value="${i}"

class="chk_butn">

 ${i+1}. ${data[i].question.substring(0, 32)}...

 </label>
`

);

 }

}

 questionHolder.innerHTML = questionToShow;

 return questionToShow;

}

function removeQuestion(){

 const questionHolder = document.getElementById('showQstn');

 questionsToRemove = [];

 let checkboxes =

document.querySelectorAll('input[type=checkbox]:checked')

 for (var c = 0; c < checkboxes.length; c++) {

 questionToShow[checkboxes[c].value] = "";

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 135 ~

 questionBank.splice(checkboxes[c].value,1);

 }

 questionHolder.innerHTML = questionToShow;

}

function saveMyFile(){

 localStorage.setItem("questionBank", JSON.stringify(questionBank));

 location.replace("quiz.html")

}

showQuestions();

const questionBank = [];

const newObject = localStorage.getItem("questionBank");

let dataStored = JSON.parse(newObject);

 if(dataStored != ""){

 for(i=0; i < dataStored.length; i++){

 questionBank.push(dataStored[i]);

 }

 } else {

 for(i=0; i < data.length; i++){

 questionBank.push(data[i]);

 }

 }

const removeButton = document.getElementById("removeQuestions");

const saveButton = document.getElementById("saveQuestions");

removeButton.addEventListener("click", removeQuestion);

saveButton.addEventListener("click", saveMyFile);

As usual, let’s break it down:

function submitRemoveForm(event){

 event.preventDefault();

}

//When the form is submitted prevent the default operation

function showQuestions(){

const questionHolder = document.getElementById('showQstn');

//reference the showQstn div

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 136 ~

questionToShow = [];

//make a new empty array called questionToShow for storage of questions

and check boxes for the users view

const newObject = localStorage.getItem("questionBank");

//get the questions from local storage

let dataStored = JSON.parse(newObject);

//parse the questions as a JSON object into a variable called dataStored

 if(dataStored != ""){

//if dataStored contains data

 for(i=0; i < dataStored.length; i++){

//for every question stored….

 questionToShow.push(

//push into the questionToShow array

 `<label>

 <input type="checkbox" name="${i}" value="${i}"

class="chk_butn">

//pass the index number if the checkbox is ticked

 ${i+1}. ${dataStored[i].question.substring(0, 32)}...

//display the question number (index + 1) and 32 characters of the

question, so that it will fit neatly onto a mobile phone screen without

wrapping onto more than one line

 </label>
`

//wrap the input in a <label</label> to make the whole thing clickable

);

 }

 } else {

//otherwise….if there is no questions stored in local storage

 for(i=0; i < data.length; i++){

//for all data obtained from the original JSON file

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 137 ~

 questionToShow.push(

//push each question and checkbox into the questionToShow array

 `<label>

 <input type="checkbox" name="${i}" value="${i}"

class="chk_butn">

//pass the index number if the checkbox is ticked

 ${i+1}. ${data[i].question.substring(0, 32)}...

//display the question number (index + 1) and 32 characters of the

question, so that it will fit neatly onto a mobile phone screen without

wrapping onto more than one line

 </label>
`

//wrap the input in a <label</label> to make the whole thing clickable

);

 }

}

 questionHolder.innerHTML = questionToShow;

//display the questions and checkboxes in the question holder

 return questionToShow;

//return questions data

}

Okay, it is important to note that so far we have simply displayed the

questions for the user depending on whether there are updates available

and stored in local storage, or if the questions are being accessed from

the original JSON question bank we created.

Next, let’s take a look at how we will remove those questions:

function removeQuestion(){

//Open the function

 const questionHolder = document.getElementById('showQstn');

//reference the showQstn div ID and store it in a variable named

questionHolder

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 138 ~

 questionsToRemove = [];

//make a new empty array where we will store the index numbers of

questions we want to remove

 let checkboxes =

document.querySelectorAll('input[type=checkbox]:checked');

//get all indexes from ticked check boxes and store them in a variable

called checkboxes

 for (var c = 0; c < checkboxes.length; c++) {

//iterate through each check box index

 questionToShow[checkboxes[c].value] = "";

//remove each ticked question from display

 questionBank.splice(checkboxes[c].value,1);

//remove each ticked question from the question bank

 }

 questionHolder.innerHTML = questionToShow;

//display the remaining questions and checkboxes in the question holder

}// close function

Okay, that was fairly straightforward. Now all that’s left to do is save the

changes in local storage, set our variables, and set up our listeners to

capture any button clicks.

Firstly, the saveMyFile() function:

function saveMyFile(){

 localStorage.setItem("questionBank", JSON.stringify(questionBank));

//when the save button is clicked, this updates our local storage with

the question bank data with chosen questions removed.

 location.replace("quiz.html"); //this redirects back to the quiz page

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 139 ~

Then we call the main showQuestions() function and set the variables, like

so:

showQuestions();

//call (invoke) showQuestions function

const questionBank = [];

//creates an empty array called questionBank ready to store our data

const newObject = localStorage.getItem("questionBank");

//gets the question bank from local storage

let dataStored = JSON.parse(newObject);

//parse JSON data into a JavaScript object and store in a variable called

dataStored

 if(dataStored != ""){

//if dataStored is not empty…

 for(i=0; i < dataStored.length; i++){

//iterate through the dataStored JSON object

 questionBank.push(dataStored[i]);

//push each question into the questionBank array

 }//close for loop

 } else {

//otherwise… if local storage is empty

 for(i=0; i < data.length; i++){

//iterate through the data object pulled in from the JSON file in the

<head></head> of our HTML mark-up

 questionBank.push(data[i]);

//push each question into the questionBank array

 }//close for loop

 }// close conditional

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 140 ~

Last, but not least, we reference the buttons for removing and saving

questions as well as setting up event listeners to listen for button clicks.

const removeButton = document.getElementById("removeQuestions");

const saveButton = document.getElementById("saveQuestions");

//reference button by ID and store them in appropriately named variables

removeButton.addEventListener("click", removeQuestion);

//listen for button clicks of the remove question button. When clicked

call the removeQuestion function

saveButton.addEventListener("click", saveMyFile);

//listen for button clicks of the save button. When clicked call the

saveMyFile function

Top class! Now all that’s left to do is enable navigation between the quiz
and admin functions.

HOW TO SET UP NAVIGATION BETWEEN PAGES

For the final part of this exercise, we will need to add a little mark-up to

each of our pages and add a few new rules to our CSS file.

Open the ‘quiz_app.html’ file and add the following inside the <div

id=”header”></div> following the </h1> closing tag:

<div id="menubox" style="display: none;">

<a href="add_question.html" alt="add questions" title="add

questions"> Add Questions

 <a href="remove_questions.html" alt="remove questions" title="remove

questions"> Drop Questions

 X

</div>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 141 ~

Then scroll to the bottom of the file and just inside the closing </body>
tag, add the following:

 <script src='js/menu.js'></script>

Then save the file (CTRL + S).

Next, open the ‘add_question.html’ file and add the following inside the

<div id=”header”></div> following the </h1> closing tag:

<div id="menubox" style="display: none;">

 Back

to Quiz

 <a href="remove_questions.html" alt="remove questions" title="remove

questions"> Drop Questions

 X

</div>

Again, scroll to the bottom of the file and just inside the closing </body>
tag, add the following:

 <script src='js/menu.js'></script>

Then save the file (CTRL + S).

Next, open the ‘remove_questions.html’ file and add the following inside

the <div id=”header”></div> following the </h1> closing tag:

<div id="menubox" style="display: none;">

 Back

to Quiz

 <a href="add_question.html" alt="add questions" title="add

questions"> Add Questions

 X

</div>

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 142 ~

Again, scroll to the bottom of the file and just inside the closing </body>
tag, add the following:

 <script src='js/menu.js'></script>

Then save the file (CTRL + S).

We will take a closer look at one of these examples, as the logic is all the

same, although they are slightly different. The differences are that each

menu set navigates to specific pages.

//used to display a clickable menu icon – a burger

 <div id="menubox" style="display: none;">

//used to style and enclose the menu

<a href="quiz.html" alt="back to quiz" title="back to

quiz"> Back to Quiz

//hyperlink 1 – back to quiz page – specific to this page

 <a href="add_question.html" alt="add questions" title="add

questions"> Add Questions

//hyperlink 2 – to add questions page – specific to this page

 X

//displays a close menu control

 </div> // close menubox div

Time for a quick break, before we finish off the exercise.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 143 ~

STYLING OUR SIMPLE NAVIGATION MENU

Hopefully, you have recharged your batteries a little. Next, we need to

add styling rules for our menu elements. Open the ‘app.css’ file and scroll

to the bottom, then add the following:

 #menu {

 position: absolute;

 top: 10px;

 right: 30px;

 }

 #menu:hover{

 background-color: rgba(255,255,255,0.5);

 font-weight: bold;

 }

 #menubox {

 position: absolute;

 background-image: -webkit-gradient(linear, left top, left bottom,

from(#ccc), to(#999));

 padding: 20px;

 border: solid 1px #333;

 width: 80vw;

 margin: 50px 0 0 7vw;

 height: 200px;

 z-index: 10;

 font-size: 1.7em;

 }

 #menubox a {

 color: #333;

 text-shadow: 0px 1px 0px #fff;

 text-decoration: none;

 }

 #menubox a:hover{

 background-color: rgba(255,255,255,0.5);

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 144 ~

 #menubox #menudismiss{

 position: absolute;

 top: 10px;

 right: 15px;

 color: rgb(102, 100, 100);

 }

 #menubox #menudismiss:hover{

 position: absolute;

 top: 10px;

 right: 15px;

 background-color: rgba(255,255,255,0.5);

 font-weight: bold;

 }

As with previous additions to our style sheet, you have seen much of the

commands before, so I’ll only explore those we haven’t already covered:

border: solid 1px #333;

// apply a solid border, 1 pixel in width and dark

grey in colour

margin: 50px 0 0 7vw;

// although we have dealt with margins before the 7vw

is a size measurement I haven’t mentioned vw stands

for viewport width. You can also use vh or viewport

height. Essentially, we are saying 7% of the viewport

width as a left margin setting (TRBL)

#menubox a:hover

//this applies rules to <a> tags that are being

hovered by the mouse inside an element with the ID of

menubox

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 145 ~

background-color: rgba(255,255,255,0.5);
//finally, we have seen color and background-color
settings with named colours and hexadecimal colour
codes, but here we are using ‘r, g, b, a’ (red, green,
blue, alpha) settings. ‘r, g and b’ are all values
from 0 – 255 or black through to white, while the ‘a’
represents the alpha channel or opacity channel. The
value we have chosen 255, 255, 255, 0.5 is white in
colour with an opacity of 50%.

JAVASCRIPT TO HANDLE SIMPLE NAVIGATION

Make a new file called ‘menu.js’ and save it in the ‘js’ folder. Then add the

following code:

function htmlMenu(){

 const menu = document.getElementById('menu');

 const menudismiss = document.getElementById('menudismiss');

 menu.innerHTML = '<h1>☰</h1>';

 menu.addEventListener("click", displayMenu);

 menudismiss.addEventListener("click", dismissMenu);

}

function displayMenu(){

 const menubox = document.getElementById('menubox');

 if(menubox.style.display == "block"){

 menubox.style.display = "none";

 } else {

 menubox.style.display = "block";

 }

}

function dismissMenu(){

 const menubox = document.getElementById('menubox');

 menubox.style.display = "none";

}

htmlMenu();

In usual form, let’s break it down!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 146 ~

function htmlMenu(){

//open htmlMenu function

 const menu = document.getElementById('menu');

//reference the element with the ID of menu and store it in a variable

named menu

 const menudismiss = document.getElementById('menudismiss');

//reference the element with the ID menudismiss and store it in a

variable

 menu.innerHTML = '<h1>☰</h1>';

//set the menu to a burger symbol

 menu.addEventListener("click", displayMenu);

//add an event listener to check for menu clicks. If clicked open the

menu

 menudismiss.addEventListener("click", dismissMenu);

//add an event listener to check for menu dismiss clicks. If clicked

close the menu

}//close function

function displayMenu(){

//open display menu function

 const menubox = document.getElementById('menubox');

//reference the element with the ID of menubox and store it in a variable

named menubox

 if(menubox.style.display == "block"){

//if the menu box is display.ed…

 menubox.style.display = "none";

//…remove it from display

 } else {

//otherwise, if the menu isn’t displayed

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 147 ~

 menubox.style.display = "block";

//display the menu

 }//close conditional

}//close function

function dismissMenu(){

//open the dismiss menu function

 const menubox = document.getElementById('menubox');

//reference the element with the ID menubox and store it in a variable

named menubox

 menubox.style.display = "none";

//remove the menu from the display

}//close the function

htmlMenu();
//call the htmlMenu function

And we’re done….you’ve done superbly. Very well done!

If you followed this exercise correctly you should now have the following

great quiz application.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 148 ~

So we created a quiz app with a countdown

timer, the ability to add new questions, and also

the ability to remove questions. Have a play

around with it. See if you can improve it! Try

adding even more features. Maybe a high score

table, the ability to choose from multiple

question sets, perhaps? There are endless

possibilities.

All files and images associated with this exercise can be found at:

https://wddtrw/resources/learntocode/quizapp.zip

https://wddtrw/resources/learntocode/quizapp.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 149 ~

CREATING A PLATFORM GAME

WHAT IS A PLATFORM GAME?

Platform games, also called platformers, are games in which the player

controls a character that runs/walks and jumps on platforms. Some of the

famous ones are Kong, Sonic the Hedgehog, and Mario Brothers, to name

just a few.

We are going to create a game called ‘Sorcerers Mountain’. That’s what I

named it, but of course, you may name it whatever you like.

The objective will be to collect all of the jewels while avoiding enemies

and obstacles along the way. This is a multi-part exercise that follows on

in subsequent books. However, by the end of this exercise, you will have a

fully playable platform game and will have learned many skills. That said,

without even knowing it, you have been developing many of the skills you

need while following earlier exercises in this book.

LESSON OBJECTIVE:

Design and develop a web-based platform game using HTML, CSS, and

JavaScript.

The game we develop will include:

 A tile map for each screen

 A game monitor

 The main character

 Three different enemies – 1 static and 2 animated

 Collectables – Jewels, Coins much more

 Obstacles – walls, jumps, barrels

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 150 ~

 Collisions and Gravity

 Sound Effects (SFX)

 Sprites and Tiles

 Title Screen and Game Over Screen

 Background Images

 Music

STEP❶ - SETTING UP YOUR FILE STRUCTURE

Here goes nothing, guys! Let’s start building our final exciting project.

Firstly, let’s implement our required file structure. This time we need

folders to accommodate different kinds of assets. Make a new project

folder called ‘game’ and save it on your desktop or another desired

location. Inside that folder, add the following file structure:

By now you should know how to create these, but in case you need a

reminder. Double click on your ‘game’ folder. Then right-click, and from

the context menu, choose new and then folder enter ‘css’ and hit enter.

Repeat this process for ‘js’, ‘music’, ‘sfx’, ‘sprites’, and ‘tilesets’. Finally,

open your chosen coding editor and create a new file and save it as

‘sorcerer.html’ within the ‘game’ folder. Job done!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 151 ~

STEP❷ - CREATING THE HTML FILE FOR OUR PLATFORM GAME

Open the ‘sorcerer.html’ file (if it’s not already open) and add the

following mark-up:

<html>

<head>

 <title>Sorcerers Mountain</title>

 <link rel="stylesheet" type="text/css" href="css/app.css"/>

</head>

<body>

 <div id="gameArea">

 <canvas id="canvas"></canvas>

 </div>

 <script type="text/javascript" src="js/assets.js"></script>

 <script type="text/javascript" src="js/tiles.js"></script>

 <script type="text/javascript" src="js/sprites.js"></script>

 <script type="text/javascript" src="js/main.js"></script>

 <script type="text/javascript" src="js/startScreen.js"></script>

 <script type="text/javascript" src="js/map1.js"></script>

</body>

</html>

</html>

The vast majority of this mark-up you will already be familiar with if you

have been following the exercises throughout this book. As you can see,

at this stage, it looks quite simple. The good news is that this HTML won’t

get any more complex. We will add references to more JavaScript files as

we build our game, but that is all. Let’s take a closer look at the mark-up.

<html>

//tell the browser we are using HTML

<head>

 <title>Sorcerers Mountain</title>

//Add a title to our HTML page

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 152 ~

 <link rel="stylesheet" type="text/css" href="css/app.css"/>

//reference ‘app.css’ to allow us to set styling rules for our page

</head>

<body>

//open the body – the main content area

 <div id="gameArea">

 <canvas id="canvas"></canvas>

 </div>

//add a canvas element within a div. This will be used to display our

game and make necessary references for our CSS and JavaScript commands

 <script type="text/javascript" src="js/assets.js"></script>

 <script type="text/javascript" src="js/tiles.js"></script>

 <script type="text/javascript" src="js/sprites.js"></script>

 <script type="text/javascript" src="js/main.js"></script>

 <script type="text/javascript" src="js/startScreen.js"></script>

 <script type="text/javascript" src="js/map1.js"></script>

//reference JavaScript files. Bring it all together

</body>

</html>

//close the body and html tags

STEP❸ - CREATING THE CSS FOR OUR PLATFORM GAME

Create a new file called ‘app.css’ and save it in the ‘css’ folder. Then, add

the following CSS rules:

body, html {

 height: 100%;

 overflow:hidden;

 background: #1f1f1f;

}

canvas{

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 153 ~

 border:1px solid black;

}

#gameArea{

 text-align: center;

 margin-top: 70px;

}

This is very simple CSS rules. All of which you have seen earlier in the
book. Let’s take a closer look:

body, html {

 height: 100%;

 overflow:hidden;

 background: #1f1f1f;

}

//set rules for the whole html element and the body. Set height to 100%,

do not show scrollbars if the content is larger than the page, and set

the background to dark grey in colour.

canvas{

 border:1px solid black;

}

//set rules for the canvas element – make a solid 1 pixel border with the

colour black

#gameArea{

 text-align: center;

 margin-top: 70px;

}

//set rules for the element with an ID of gameArea. Align the game area

to the centre and 70 pixels from the top of the screen.

As was already said, these are all very straightforward rule sets.

Moving on!!

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 154 ~

STEP❹ - CREATING ASSETS FOR OUR PLATFORM GAME

Next, create a new file called ‘assets.js’ and save it in the ‘js’ folder. Then

add the following code and save it (CTRL + S).

var canvas = document.querySelector("#canvas"),

 ctx = canvas.getContext("2d"),

 width = 1152,

 height = 704,

 player = {

 screen: 15,//15 = START SCREEN

 },

 press_s = { width: 500, height: 40, f: 100 },

 instruct = { x: 126, y: 300, w: 900, h: 57, f: 103 };

What are we doing here? The ‘assets.js’ file is used to set all initial values

and store them in a JSON object. Let’s take a closer look:

var canvas = document.querySelector("#canvas"),

// reference the canvas element by its ID and store it in a variable

called canvas

 ctx = canvas.getContext("2d"),

// To enable canvas' 2D rendering context on the canvas element (allows

us to draw in 2D on the canvas)

 width = 1152,

//set the canvas width to 1152 pixels – very important that you use a

size that is a multiple of your intended tile size. Our chosen tile size

is 64 pixels x 64 pixels (1152 pixels will accommodate 18 tiles across)

 height = 704,

//set the canvas height to 704 pixels. As with the width, it must be a

multiple of your chosen tile size (704 pixels will accommodate 11 tiles

down)

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 155 ~

 player = {

 screen: 15,

 },

//Set up a player object where we will store all start values for the

player. Here we have set the initial screen to 15 which represents the

title screen background, as we’ll see in more detail in the next section

 press_s = { width: 500, height: 40, f: 100 },

//set the width, height and frame of a press ‘s’ on screen message to

start the game

 instruct = { x: 126, y: 300, w: 900, h: 57, f: 103 };

//set the initial x coordinate, y coordinate, width, height, and frame of

our sprite. We will use this to show the user instructions when they

press and hold ‘i’.

This won’t do anything by itself as it works in conjunction with other

JavaScript files we are yet to create.

STEP❺ - CREATE AND REFERENCE TILES FOR BUILDING OUR TILE MAPS

Create a new file called ‘tiles.js’ and save it in the ‘js’ folder.

Before we add any code to this file you’ll need to download the tile

images to the ‘tilesets’ folder from the following URL:

https://wddtrw/resources/learntocode/platformgame_building_tiles.zip

Once downloaded, unzip it and add the contents to the ‘tilesets’ folder.

To unzip the file, double click it and then select all of the contents (CTRL +

A) and copy it (CTRL + C), then open the ‘tilesets’ folder and paste (CTRL +

V).

If you have followed this correctly your ‘tilesets’ folder will now contain

the following 64 x 64 pixel tiles, plus 2 background images. You can of

https://wddtrw/resources/learntocode/platformgame_building_tiles.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 156 ~

course choose to make your own. If you wish to do that or edit the ones

from the file to make them a little different you will need an image editor.

If you don’t have access to one I recommend Gimp, which is more than

adequate to do the job, and best of all it’s free. You can download it for

free at https://gimp.org.

We will use these tiles in our game screens using tile maps. More on that

in a bit. For now, let’s set up a JavaScript file to reference them and

enable their usage in our game.

Create a new file called ‘tiles.js’ and save it in the ‘js’ folder, then add the

following code. We will start small here, but add more tiles as we need

them, when building the game.

/* ================================

TILE KEY:

0 - blank space

1 - base block dark grey

2 - base block left - lives

3 - base block right - lives

https://gimp.org/

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 157 ~

4 - base block light grey

5 - wall block light grey

6 - wall block bricks light grey

7 - stones block

8 - pedestal topper

9 - floating platform 2 bricks

10 - pedestal base

11 - low pedestal

12 - floating platform 1 brick

13 - game monitor left tile

14 - game monitor right tile

15 - title screen background

16 - game screen background stone wall

=================================== */

 const tile = [];

 for(i=0; i < 17; i++){

 tile[i] = new Image();

 tile[i].src = `tilesets/building_tiles/${i}.png`;

 }

Let’s take a look a closer look at the code:

Firstly, note the extensive comments. This is so that we know which index

number to use when drawing our tile maps.

 const tile = [];

//create an empty array and store it in a variable called tile

 for(i=0; i < 17; i++){

//iterate through our tiles and add them to our array

 tile[i] = new Image();

//set index ‘i’ of the array to a new image object

tile[i].src = `tilesets/building_tiles/${i}.png`;

//set the source file of the image object

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 158 ~

Note, for this method to work the file names need to be sequential and in
the same format. We can also add tiles individually to our tile array using
similar coding, but specifying the index instead of using the ‘for loop’, like
so:
tile[99] = new Image();

tile[99].src = ‘tilesets/building_tiles/[FILENAME HERE]’;

STEP❻ - CREATE AND REFERENCE SPRITE OBJECTS

Next, create a new file called ‘sprites.js’ and save it in the ‘js’ folder.

Before we add any code to this file you’ll need to download the images to
the ‘sprites’ folder from the following URL:

https://wddtrw/resources/learntocode/platformgame_title_sprites.zip

Once downloaded, unzip it and add the content to the ‘sprites’ folder. To

unzip the file, double click it and then select all of the contents (CTRL + A)

and copy it (CTRL + C), then open the ‘sprites’ folder and paste (CTRL + V).

If all went well you should have the following:

https://wddtrw/resources/learntocode/platformgame_title_sprites.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 159 ~

Okay, now add the following code to your ‘sprites.js’ file:

/* ============================

SPRITES KEY:

100 - Press 's'

101 - Press 's' flash

102 - Instructions

103 - Title - Sorcerers Mountain

104 - Instruction Message

105 - Controls

106 - Copyright Message

107 - Get ready text

108 - Get ready text flash

109 - Game Over text

============================== */

var sprite = [];

for(i = 100; i < 110; i++){

 sprite[i] = new Image();

 sprite[i].src = `sprites/${i}.png`;

}

This works in the same way as to how we referenced our tiles. As with our

tiles, we will also be adding many more sprites as we get further into our

game development.

STEP❻ - CREATE THE MAIN JAVASCRIPT FILE TO TIE IT ALL TOGETHER

Open your chosen coding environment, if it’s not already open, and

create a new file called ‘main.js’ and save it in the ‘js’ folder. Then add the

following code and save it (CTRL + S).

canvas.width = width;

canvas.height = height;

function update() {

 ctx.clearRect(0, 0, width, height);

 ctx.fillStyle = "#333";

 ctx.beginPath();

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 160 ~

 if (player.screen === 15){ drawMyMap1000();}

 if (player.screen === 1){ drawMyMap(); }

 requestAnimationFrame(update);

}

window.addEventListener("load", function () {

 update();

});

document.body.addEventListener("keydown", function (e) {

 keys[e.keyCode] = true;

});

document.body.addEventListener("keyup", function (e) {

 keys[e.keyCode] = false;

});

The ‘main.js’ file will hold the code that will enable us to load different

maps based on key presses and/or the player leaving the confines of the

current game screen. We will be adding lots more logic here as we build

the game. For now, let’s take a deeper look at what we’ve done so far:

canvas.width = width;

//bring in the initial setting canvas width from our assets file

canvas.height = height;

//bring in the initial setting canvas height from our assets file

function update() { // Main screen update function

 ctx.clearRect(0, 0, width, height);// Clear the canvas

 ctx.fillStyle = "#333"; //fill canvas with dark grey colour

 ctx.beginPath();// begin or reset current path

 if (player.screen === 15){ drawMyMap1000();} // draw the title screen

 if (player.screen === 1){ drawMyMap(); }// draw the first game screen

 requestAnimationFrame(update);// animate the current frame

}//close update function

window.addEventListener("load", function () {//when web page has loaded…

 update();//call the update function

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 161 ~

});

document.body.addEventListener("keydown", function (e) {

 keys[e.keyCode] = true;

});

//listen for key down events and get the relevant key code

document.body.addEventListener("keyup", function (e) {

 keys[e.keyCode] = false;

});

//listen for key up events and get the relevant key code

STEP❼ - HANDLING THE START / TITLE SCREEN

Next, we are going to create the first script that will display some results.
Create a new file called ‘startScreen.js’ and save it in the ‘js’ folder. Now
add the following code and save it (CTRL + S).

function drawMyMap1000(){

ctx.drawImage(tile[15], 0, 0, 1152, 704);

 if(keys[83]){

 player.screen = 1;

 }

 if(keys[73]){

 instruct.f = 102; instruct.x = 126, instruct.y = 25, instruct.w =

900, instruct.h = 567;

 } else {

 ctx.drawImage(sprite[104], 383.5, 380, 385, 24);

 instruct.f = 103; instruct.x = 126, instruct.y = 200, instruct.w =

900, instruct.h = 57;

 ctx.drawImage(sprite[105], 476, 435, 200, 137);

 ctx.drawImage(sprite[106], 342, 275, 469, 85);

 }

 ctx.drawImage(sprite[instruct.f], instruct.x, instruct.y, instruct.w,

instruct.h);

 ctx.drawImage(sprite[press_s.f], 326, 610, press_s.width,

press_s.height);

 if (press_s.f === 100){

 setTimeout(function(){ press_s.f = 101; },200);

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 162 ~

 } else {

 setTimeout(function(){ press_s.f = 100; },200);

 }

}

Top class! Let’s take a closer look and see what’s going on:

function drawMyMap1000(){//open the draw start screen function

ctx.drawImage(tile[15], 0, 0, 1152, 704);

//draw the background image - tile[15] the stored title image, the rest

is coordinates 0,0 :top left - 1152, 704 :bottom right

 if(keys[83]){// if the user presses ‘s’ to start

 player.screen = 1; //change the screen to map 1

 }

 if(keys[73]){// if the user presses ‘i’….

 instruct.f = 102; instruct.x = 126, instruct.y = 25, instruct.w =

900, instruct.h = 567;

//show the instructions image – sprite 102

 } else {//otherwise….

 ctx.drawImage(sprite[104], 383.5, 380, 385, 24);

 instruct.f = 103; instruct.x = 126, instruct.y = 200, instruct.w =

900, instruct.h = 57;

//draw the instructions message

 ctx.drawImage(sprite[105], 476, 435, 200, 137);

//draw the user controls

 ctx.drawImage(sprite[106], 342, 275, 469, 85);

// …and draw the copyright message

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 163 ~

 ctx.drawImage(sprite[instruct.f], instruct.x, instruct.y, instruct.w,

instruct.h);

//Always draw the title – Sorcerers Mountain

 ctx.drawImage(sprite[press_s.f], 326, 610, press_s.width,

press_s.height);

//bring in the initial values for press_s from assets

 if (press_s.f === 100){

 setTimeout(function(){ press_s.f = 101; },200);

 } else {

 setTimeout(function(){ press_s.f = 100; },200);

 }

//make the ‘Press s to Start message animate between image 100 and 101

every 0.2 seconds

}//close draw map function

Once this code has been saved you will now be able to view the title

screen. Open ‘sorcerer.html’ in your browser (Google Chrome

recommended). If you’ve followed the exercise correctly so far, you

should have the following result:

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 164 ~

It’s looking great so far. Moving on…

STEP❽ - BUILDING OUR FIRST TILE MAP

Now let’s build our first tile map!

Create a new file called ‘map1.js’ and save it in the ‘js’ folder. Okay, now

add the following code, then save the file (CTRL + S).

function drawMyMap(){

ctx.drawImage(tile[16], 0, 0);

var xt = 0;

var yt = -64;

var tileMap = [];

var mapNo = 0;

tileMap[0] = [6, 6, 6, 6, 6, 6, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6];

tileMap[1] = [6, 0, 0, 0, 10, 0, 0, 11, 0, 0, 10, 0, 6, 0, 0, 0, 0, 0];

tileMap[2] = [6, 0, 0, 9, 9, 9, 9, 9, 9, 9, 8, 0, 0, 0, 0, 0, 0, 0];

tileMap[3] = [6, 0, 11, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 9, 9, 0, 6];

tileMap[4] = [6, 9, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 6];

tileMap[5] = [6, 0, 0, 0, 0, 9, 9, 0, 0, 0, 10, 0, 0, 9, 0, 9, 9, 6];

tileMap[6] = [6, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 0, 0, 0, 0, 0, 6];

tileMap[7] = [0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 8, 9, 8, 9, 6];

tileMap[8] = [9, 9, 9, 8, 9, 0, 0, 0, 0, 0, 0, 0, 8, 10, 0, 10, 0, 6];

tileMap[9] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3];

tileMap[10] = [13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14,

13, 14, 13, 14];

 for (mapNo=0; mapNo < 11; mapNo++){

 yt+=64;

 for (xt=0; xt < tileMap[mapNo].length*64; xt+=64){

 if (xt > 1152){ xt = 0; }

 var i = tileMap[mapNo][xt/64];

 ctx.drawImage(tile[i], xt, yt);

}

 }

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 165 ~

Each of our game maps will be drawn in the same way. Let’s take a closer

look:

function drawMyMap(){

//open the draw map function

ctx.drawImage(tile[16], 0, 0);

//draw the game screen background – a stone wall

var xt = 0; //tile x coordinate variable declaration

var yt = -64; //tile y coordinate variable declaration

var tileMap = []; //creates a new empty array to store the tile map

var mapNo = 0; //map rows variable declaration

tileMap[0] = [6, 6, 6, 6, 6, 6, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6];

tileMap[1] = [6, 0, 0, 0, 10, 0, 0, 11, 0, 0, 10, 0, 6, 0, 0, 0, 0, 0];

tileMap[2] = [6, 0, 0, 9, 9, 9, 9, 9, 9, 9, 8, 0, 0, 0, 0, 0, 0, 0];

tileMap[3] = [6, 0, 11, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 9, 9, 0, 6];

tileMap[4] = [6, 9, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 6];

tileMap[5] = [6, 0, 0, 0, 0, 9, 9, 0, 0, 0, 10, 0, 0, 9, 0, 9, 9, 6];

tileMap[6] = [6, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 0, 0, 0, 0, 0, 6];

tileMap[7] = [0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 8, 9, 8, 9, 6];

tileMap[8] = [9, 9, 9, 8, 9, 0, 0, 0, 0, 0, 0, 0, 8, 10, 0, 10, 0, 6];

tileMap[9] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3];

tileMap[10] = [13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14,

13, 14, 13, 14];

//stores tile index numbers in the tileMap array

 for (mapNo=0; mapNo < 11; mapNo++){

//iterate through each map row

 yt+=64;

//adds 64 to yt for every iteration of the for loop

 for (xt=0; xt < tileMap[mapNo].length*64; xt+=64){

//iterate through each map 64 pixel wide column

 if (xt > 1152){ xt = 0; }

//if at the end of the row, start another

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 166 ~

 var i = tileMap[mapNo][xt/64];

//set the variable i to hold each tile reference

 ctx.drawImage(tile[i], xt, yt);

//draw the tiles spaced 64 pixels apart

 }// close column for loop

 }// close row for loop

}// close draw function

Great job! If you have followed the exercise correctly when you hold

down the ‘i’ key, you should be presented with the following user

instruction set:

…And if you hit the ‘s’ key you should be presented with your first tile

map, as shown over the page:

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 167 ~

Awesome stuff!

It’s a good time to have a break and recharge your batteries.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 168 ~

STEP❾ - DESIGNING TILE MAPS

In simple terms, to make the first tile map we have populated a grid that

is 1152 pixels wide and 704 pixels tall, which is split into 64 by 64-pixel

tiles. A representation is shown below:

Each 64 x 64 square is a placeholder for one of our tiles. I have designed

each of the screens so that the bottom 2 rows are always the same. These

tiles will eventually be used for a game monitor, to show lives, player

score, collected items, and so on. The game monitor will eventually look

something like that below:

The rest of the tiles, row 0 to row 8 will be changed to form the game

screens. Where we want to be able to exit to allow our player into other

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 169 ~

screens we’ll need to leave gaps using tile[0]. Designing our next tile map

is a little way off though, so for now, let’s add our main player and give it

a few attributes.

First, you’ll need to download the sprite images to the ‘sprites’ folder
from the following URL:

https://wddtrw/resources/learntocode/platformgame_wizard_sprites.zip

Once downloaded, unzip it and add the content to the ‘sprites’ folder. To

unzip the file, double click it and then select all of the contents (CTRL + A)

and copy it (CTRL + C), then open the ‘sprites’ folder and paste (CTRL + V).

If all went well you should have the following:

As with previous tiles and sprites, you’ll see that they are numbered

sequentially.

Open the ‘sprites.js’ file and add the following code to the bottom of the

file:

/* ============================

WIZARD KEY:

1 - Wizard Right Frame 1

2 - Wizard Right Frame 2

https://wddtrw/resources/learntocode/platformgame_wizard_sprites.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 170 ~

3 - Wizard Left Frame 1

4 - Wizard Left Frame 2

5 - Wizard Aura Frame 1

6 - Wizard Aura Frame 2

7 - Wizard Aura Frame 3

8 - Wizard Aura Frame 4

9 - Wizard Aura Frame 5

10 - Wizard Aura Frame 6

============================== */

var wiz = [];

for(i = 1; i < 11; i++){

 wiz[i] = new Image();

 wiz[i].src = `sprites/${i}.png`;

}

This works the same as last time. With each iteration of the ‘for…loop,’ an

image is placed in the wiz = [] array with the relevant index number.

As with the other sprites and tiles, we have commented them with a key,

so that we can quickly see which index number references which sprite.

Great job!

Next, open the ‘assets.js’ file and update the player object, as below and

save the file (CTRL + S):

 player = {

 x: 608,

 y: height – 182,

 width: 35,

 height: 52,

 screen: 15,

 start: 0,

 f: 3

 },

Okay, so we’ve set initial variables for our player. We have set the X

coordinate to 608 pixels across our canvas, the Y coordinate to 522 (704 –

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 171 ~

182), our player height and width to 52 pixels and 35 pixels respectively,

the screen was already set at 15 (the title screen) and finally our

animation frame number (f) to sprite number 3.

Okay, with that done, now open ‘main.js’ and add the following two

conditionals and save the file (CTRL + S):

 if (player.screen === 1){ drawMyMap(); } ◄ add the following after

this line of code

 if (player.screen < 15 && player.start === 0) {

 player.start = 1;

 }

 if (player.screen != 15){

 ctx.drawImage(wiz[player.f], player.x, player.y);

 }

So what have we done here?

 if (player.screen < 15 && player.start === 0) {

 player.start = 1;

 }

//if the screen is no longer the title screen and the player start

attribute is 0, set the start attribute to 1

 if (player.screen != 15){

 ctx.drawImage(wiz[player.f], player.x, player.y);

 }

//if the player screen is not 15 – no longer the title screen, then draw

the player

Refresh your browser and press ‘s’. You will see that
your player is now displayed.

Now let’s add some controls to make your player move. Once again, edit
the ‘assets.js’ file and add the following highlighted attributes:

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 172 ~

 player = {

 x: 608,

 y: height - 182,// Start height (Must be larger than tile, plus

character height

 width: 35,

 height: 52,

 speed: 3,

 velX: 0,

 velY: 0,

 screen: 15, //15 = START SCREEN

 start: 0,

 f: 3

 },

 press_s = { width: 500, height: 40, f: 100 },

 instruct = { x: 126, y: 300, w: 900, h: 57, f: 103 },

 keys = [],

 gravity = 0.3,

 friction = 0.8;

These initialise values for speed, velocity on the X-axis, velocity on the Y
axis, a value for gravity to allow our player to fall back to the ground after
jumping, and another for friction to dampen the players’ movement
making the player come to a stop gradually. Save the file (CTRL + S).

Next, edit the ‘main.js’ file and add the following, just after the opening
line of the update() function:

 if (keys[39]) {

 if (player.velX < player.speed) {

 player.velX++;

 player.f = 1;

 }

 }

 if (keys[37]) {

 if (player.velX > -player.speed) {

 player.velX--;

 player.f = 3

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 173 ~

 }

 player.velX *= friction;

 player.velY += gravity;

 player.x += player.velX;

Save the file (CTRL + S). Now, let’s take a closer look at the code:

 if (keys[39]) {

 if (player.velX < player.speed) {

 player.velX++;

 player.f = 1;

 }

 }

//if the right arrow is pressed on the keyboard move the player to the

right and set the player sprite to sprite[1] – facing right

 if (keys[37]) {

 if (player.velX > -player.speed) {

 player.velX--;

 player.f = 3

 }

 }

//if the left arrow is pressed on the keyboard move the player to the

left and set the player sprite to sprite[3] – facing left

 player.velX *= friction;

// Set the velocity on X-axis to gradually stop by applying the friction

coefficient

 player.velY += gravity;

// Set the velocity on the Y-axis to fall back to the ground by applying

the gravity coefficient

 player.x += player.velX;

//move the player x position based on velocity X

Save your file (CTRL + S).

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 174 ~

Now refresh your browser, press ‘s’, and try moving your player left and
right using the left and right arrows on your keyboard. Of course, you can
choose alternative keys if you wish. Just change the index number of
keys[] to match your desired key code. See the table below:

Key Code Key Code Key Code

backspace 8 e 69 numpad 8 104

tab 9 f 70 numpad 9 105

enter 13 g 71 multiply 106

shift 16 h 72 add 107

ctrl 17 i 73 subtract 109

alt 18 j 74
decimal

point 110

pause/break 19 k 75 divide 111

caps lock 20 l 76 f1 112

escape 27 m 77 f2 113

page up 33 n 78 f3 114

page down 34 o 79 f4 115

end 35 p 80 f5 116

home 36 q 81 f6 117

left arrow 37 r 82 f7 118

up arrow 38 s 83 f8 119

right arrow 39 t 84 f9 120

down arrow 40 u 85 f10 121

insert 45 v 86 f11 122

delete 46 w 87 f12 123

0 48 x 88 num lock 144

1 49 y 89 scroll lock 145

2 50 z 90 semi-colon 186

3 51 left window key 91 equal sign 187

4 52
right window

key 92 comma 188

5 53 select key 93 dash 189

6 54 numpad 0 96 period 190

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 175 ~

Key Code Key Code Key Code

7 55 numpad 1 97
forward

slash 191

8 56 numpad 2 98 grave accent 192

9 57 numpad 3 99 open bracket 219

a 65 numpad 4 100 back slash 220

b 66 numpad 5 101 close bracket 221

c 67 numpad 6 102 single-quote 222

d 68 numpad 7 103

Although we can move our player, currently we can only move left and
right.

Before we give our player the ability to be able to jump we need to set up
collisions between the player and the environment. For instance, at the
moment the player can walk through walls. Also, if we set gravity working
right now, the player would fall straight through the floor. To be able to
jump the player must also be able to return to the ground, so we need
gravity. At the moment, although we have set the tile map so that we can
see it, nothing is solid. So next, let’s add some substance to the floor,
walls, and platforms.

STEP❿ - COLLISION DETECTION

Let’s first take a look at the concept of collision detection. It does involve
some calculation, but if we use circles for our example, it’s easier to grasp.
Take two circles, both with a diameter of 10 cm, therefore a radius of
5cm. If we say the centre of circle 1 is C1 and the centre of circle 2 is C2.
To be able to calculate if they have collided (overlapped) all we need to

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 176 ~

work out is if the distance between C1 and C2 is less than 10cm. See the
diagram below:

If it’s more, then the circles cannot be touching, but less means that they
have overlapped.
In order we need to:

1. calculate the size of the objects
2. find the centre of both objects
3. calculate the distance from the centre to the edge of both objects

and find the total
4. calculate the difference between the current centre measurements

compared with the total allowable distance

So our formula to detect a collision will look something like this:
let c1_middle = c1.width / 2; //5cm

let c2_middle = c2.width / 2; //5cm

let c_total = c1_middle + c2_middle;//10cm

if(((c1.x - c1_middle) - (c2.x - c2_middle)) < c_total || ((c1.y -

c1_middle) - (c2.y - c2_middle)) < c_total){

 //what to do when a collision has occured

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 177 ~

We can of course simplify our equation further, but this is for the sake of
example. Here c1.x c1.y c2.x c2.y represent current x and y coordinates of
c1 and c2. So, we’re saying if the current x positions of c1 and c2 is less
than 10cm or the current y positions of c1 and c2 is less than 10cm, then a
collision has occurred. The good news is that we only need to set up our
collisions once. A single function will handle it all for us. It looks
complicated on the face of it, but when it’s broken down it’s much more
easily understood.

Until you can get your head around it, you can treat the function as sort of
a black box. You only need to know the inputs required to get the desired
outputs. However, mathematics plays a fundamental part in games
programming so it is better if you can get to grips with it.

Okay, let’s do it! Once again, open the ‘assets.js’ file and add the following
code to the bottom of the file and save the file (CTRL + S):

 var boxes = [];

 var boxes1 = [];

 var boxesDrawn1 = 0;

//create 2 empty arrays for our collision coordinates and set up a

variable to check if the collision boxes have been drawn.

Next, create a new file called ‘collisions.js’ and save it in the ‘js’ folder.
Add the following function and then save it (CTRL + S).

function colCheck(shapeA, shapeB)

 var vX = (shapeA.x + (shapeA.width / 2)) - (shapeB.x + (shapeB.width

/ 2)),

 vY = (shapeA.y + (shapeA.height / 2)) - (shapeB.y +

(shapeB.height / 2)),

 hWidths = (shapeA.width / 2) + (shapeB.width / 2),

 hHeights = (shapeA.height / 2) + (shapeB.height / 2),

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 178 ~

 colDir = null;

 if (Math.abs(vX) < hWidths && Math.abs(vY) < hHeights) {

 var oX = hWidths - Math.abs(vX),

 oY = hHeights - Math.abs(vY);

 if (oX >= oY) {

 if (vY > 0) {

 colDir = "t";

 shapeA.y += oY;

 } else {

 colDir = "b";

 shapeA.y -= oY;

 }

 } else {

 if (vX > 0) {

 colDir = "l";

 shapeA.x += oX;

 } else {

 colDir = "r";

 shapeA.x -= oX;

 }

 }

 }

 return colDir;

}

Okay, here we are passing 2 parameters into our function, ‘shapeA’ and
‘shapeB’. We are checking for collisions in all directions between the two
shapes and returning one value called ‘colDir’. The value ‘colDir’ return is
simply ‘l’, ‘r’, ‘b’, or ‘t’, which represents the direction of any detected
collision, left, right, bottom and top respectively. Using these values we
will determine what we want to do in that instance. First, though, let’s
take a closer look at what’s going on in our colDir function:

function colCheck(shapeA, shapeB) {

//first we pass the player and obstacle to check into the function -

shapeA and shapeB

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 179 ~

 var vX = (shapeA.x + (shapeA.width / 2)) - (shapeB.x +

(shapeB.width / 2)),

 vY = (shapeA.y + (shapeA.height / 2)) - (shapeB.y +

(shapeB.height / 2)),

// get the vectors (x and y coordinates) to check against

 hWidths = (shapeA.width / 2) + (shapeB.width / 2),

 hHeights = (shapeA.height / 2) + (shapeB.height / 2),

 colDir = null;

// add the half widths and half heights of the shapes

 if (Math.abs(vX) < hWidths && Math.abs(vY) < hHeights) {

// if the x and y vectors are less than the half width or half height,

they must be overlapping one another (a collision)

 var oX = hWidths - Math.abs(vX),

 oY = hHeights - Math.abs(vY);

 if (oX >= oY) {

 if (vY > 0) {

 colDir = "t";

 shapeA.y += oY;

 } else {

 colDir = "b";

 shapeA.y -= oY;

 }

 } else {

 if (vX > 0) {

 colDir = "l";

 shapeA.x += oX;

 } else {

 colDir = "r";

 shapeA.x -= oX;

 }

 }

 }

// figure out on which side we are colliding (top, bottom, left, or

right)

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 180 ~

 return colDir;

//return the direction of the collision

}// Close Collision Check Function

We have a math function here, Math.abs().The Math.abs() method
returns the absolute value of a number.

It returns:

 A number representing the absolute value of the specified number
 NaN if the value is not a number (a text string for instance)
 0 if the value is null (doesn’t have a value)

What does the absolute value of a number mean by definition?

1. MATHEMATICS - the magnitude of a real number without regard to

its sign.
2. TECHNICAL - the actual magnitude of a numerical value or

measurement, irrespective of its relation to other values.

In our case, if we take Math.abs(vX), it doesn’t matter if vX is a
negative or a positive number, the method will return only the number.

E.g.
Math.abs(-89.25);//returns 89.25

Math.abs(89.25);//returns 89.25

We do this so that the number is prepared for comparison in our
conditionals using various operators.

WHAT IS AN OPERATOR?

There are many types. An operator performs an operation on a single or
multiple operands (data value) and produces a result. See detailed tables
over the next couple of pages.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 181 ~

Arithmetic Operators

OPERATOR DESCRIPTION

+ addition

- subtraction

* multiplication

/ division

% modulus(division remainder)

++ increment

-- decrement

Assignment Operators

OPERATOR USAGE LONGHAND

= x = y x = y

+= x += y x = x + y

-= x -= y x = x – y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

Comparison Operators

OPERATOR DESCRIPTION

== equal to

=== equal to value and type

!= not equal to

!== not equal to value or type

> greater than

< less than

>= greater than or equal to

<= less than or equal to

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 182 ~

Logical Operators

OPERATOR DESCRIPTION

&& and

|| or

! not

Conditional Operator

variable = (condition) ? value1 : value2

Bitwise Operators

OPERATOR DESCRIPTION

& AND

| OR

~ NOT

^ XOR

<< Left Shift

>> Right Shift

Okay, now we have to do something with the returned result. Open
‘main.js’ and add the following code:

if (player.screen === 1){ drawMyMap(); }//◄ add the following after this

 if (player.screen < 15 && player.start === 0) {player.start = 1;}

 if (player.screen === 1 && boxesDrawn1 === 0){ drawBoxes1(); }

 if (player.screen === 1 && boxesDrawn1 < 2) {

 boxes = boxes1;

 if (player.entered < 1){player.entered = 1;}

 }

 player.grounded = false;

 for (var i = 0; i < boxes.length; i++) {

 ctx.rect(boxes[i].x, boxes[i].y, boxes[i].width,

boxes[i].height);

 var dir = colCheck(player, boxes[i]);

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 183 ~

 if (dir === "l" || dir === "r") {

 player.velX = 0;

 player.jumping = false;

 } else if (dir === "b") {

 player.grounded = true;

 player.jumping = false;

 }

 }

 if(player.grounded){player.velY = 0;}

 player.x += player.velX;

 player.y += player.velY;

if(player.y > 600){ player.y = 522;}

if (player.screen != 15){

 ctx.drawImage(wiz[player.f], player.x, player.y);

}

Let’s take a closer look at what’s going on.
 if (player.screen < 15 && player.start === 0) {player.start = 1;}

// if the player is no longer on the title screen and start = 0, set

start to 1 – the game has began

 if (player.screen === 1 && boxesDrawn1 === 0){ drawBoxes1(); }

//if the game has started and collision boxes haven’t been drawn then

draw them now

 if (player.screen === 1 && boxesDrawn1 < 2) {

 boxes = boxes1;

 if (player.entered < 1){player.entered = 1;}

 }

//is the player’s screen is 1 (the first game screen) and the collision

boxes have started to be drawn set the boxes variable to hold the

collision boxes for screen 1. Player entered means the player has been

drawn, so set to 1.

 player.grounded = false;

// set the player to not on the ground

 for (var i = 0; i < boxes.length; i++) {

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 184 ~

 ctx.rect(boxes[i].x, boxes[i].y, boxes[i].width,

boxes[i].height);

//draw rectangles that the player will use for collisions

 var dir = colCheck(player, boxes[i]);

//call the colCheck function to determine if there are any collisions and

from which direction

 if (dir === "l" || dir === "r") {

 player.velX = 0;

 player.jumping = false;

 } else if (dir === "b") {

 player.grounded = true;

 player.jumping = false;

 }

 }

//depending on which direction the player has collided from set rules for

the collision

 if(player.grounded){player.velY = 0;}

//if player is on the ground set the velocity for the player in the Y

direction to 0

 player.x += player.velX;

//allow the player to move the player on the X axis

 player.y += player.velY;

//allow the player to move the player on the Y axis

if(player.y > 600){ player.y = 522;}

//set play start Y axis position

if (player.screen != 15){

 ctx.drawImage(wiz[player.f], player.x, player.y);

}

//if the player is not on the title screen draw the main character

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 185 ~

Lastly, open ‘map1.js’ and add the following code to the bottom of the
file, then save it (CTRL + S):

function addBox(a,b,c,d){

 boxes1.push({ x: a, y: b, width: c, height: d });

 return

}

var boxes = [];

function drawBoxes1(){

 // BORDER WALLS

 addBox(0,577,1152,1);

 addBox(0,0,64,448);

 addBox(1088,192,64,384);

 addBox(0,0,384,64);

 addBox(576,0,576,64);

 addBox(768,64,64,64);

 // PLATFORMS

 addBox(0,512,320,1);

 addBox(768,512,64,20);

 addBox(832,448,256,1);

 addBox(384,448,128,1);

 addBox(128,450,57,62);

 addBox(576,384,192,1);

 addBox(320,320,128,1);

 addBox(832,320,64,1);

 addBox(960,320,128,1);

 addBox(64,256,192,1);

 addBox(640,256,192,1);

 addBox(128,192,64,64);

 addBox(896,192,128,1);

 addBox(192,128,512,1);

 addBox(448,64,64,1);

 boxesDrawn1+=1;

 return boxesDrawn1;

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 186 ~

These functions draw the collision boxes at set coordinates. Let’s take a
closer look at how it works:

In our assets file, we have set an array called boxes1.

function addBox(a,b,c,d){

//open a function called addBox and allow paramters a,b,c and d

 boxes1.push({ x: a, y: b, width: c, height: d });

//each time the function is invoked, push a new object into the boxes1

array which sets the x and y axis to start drawing from and also the

length and height of the box to draw.

 return

//return the results

}

var boxes = [];

//make a new array called boxes

The drawBoxes1 function adds collision boxes as illustrated above.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 187 ~

Inside the drawBoxes1 function we have a bunch of function calls that add
collision boxes, like so:

addBox(0,577,1152,1);

//call / invoke the addBox function and send the necessary parameters.

X coordinate to start from, Y coordinate to start from, Width in pixels,

Height in pixels

This, in conjunction with our colDir function, has the effect of making our
platforms and walls appear solid. Note that the platforms only have a 1
pixel surface for collision detection. This is so that our main character can
pass beneath the platforms. Our main character is 52 pixels tall, and each
tile is 64 pixels tall. The actual platform is 16 pixels tall and if we take that
away from 64 we are only left with 48 pixels of available space. Therefore,
our player wouldn’t be able to pass through. See the images below.

You can see in the first image that our player isn’t able to pass beneath
the platform, while in the second image our player can pass freely.

With collisions now set up, open ‘main.js’ and just inside the main update
function opening add the following code:

 if (keys[38] || keys[32]) {

 // up arrow or space

 if (!player.jumping && player.grounded) {

 player.velY = -player.speed * 2.5;

 player.jumping = true;

 player.grounded = false;

 }

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 188 ~

Save the file. This enables the player to jump. Whenever you press the
spacebar or the arrow up key. Combined with the arrow left and right,
you can now navigate through the whole game screen. Try it out.

Awesome! Let’s add some enemies!

STEP⓫ - ADDING ENEMIES - BOTH STATIC AND MOVING

At the beginning of the exercise, I explained that the objective of the
game was to collect all of the jewels while avoiding the obstacles. In this
section, we are going to add ghosts, bats, and deadly spikes.
For the sake of giving them a label, we’ll call all of them enemies.

The first thing we need to do is bring in the sprites we need. As before
these are available for you to download via the link below:

https://wddtrw/resources/learntocode/platformgame_enemy_sprites.zip

Once downloaded, unzip it and add the contents to the ‘sprites’ folder. To

unzip the file, double click it and then select all of the contents (CTRL + A)

and copy it (CTRL + C), then open the ‘sprites’ folder and paste (CTRL + V).

If all went well you should have the following:

In the usual fashion, we’re going to add them to the sprites file. Open
‘sprites.js’ and add the following code to the bottom of the file, then save
it (CTRL + S):

https://wddtrw/resources/learntocode/platformgame_enemy_sprites.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 189 ~

/* ============================

ENEMIES KEY:

200 - Ghost Frame 1

201 - Ghost Frame 2

202 - Spikes

203 - Bat Frame 1

204 - Bat Frame 2

============================== */

for(i = 200; i < 205; i++){

 sprite[i] = new Image();

 sprite[i].src = `sprites/${i}.png`;

}

//this adds our 5 enemy sprites to the sprites array at stated indexes

The next thing we need to do is set them up in our assets file. Open the
‘assets.js’ file. Following the closing curly brace of the player object (},)
add the following code, and then save the file:

enemy1 = { x: 64, y: 452, w: 59, h: 57, s: 2, f: 200, dest: 0 },

enemy2 = { x: 256, y: 68, w: 59, h: 57, s: 3, f: 200, dest: 0 },

enemy3 = { x: 1024, y: 64, w: 59, h: 57, s: 2, f: 200, dest: 0 },

bat1 = { x: 64, y: 482, w: 64, h: 17, s: 2, f:203, dest: 0 },

spikes1 = { x: 512, y: 556, w: 61, h: 20 },

spikes2 = { x: 684, y: 556, w: 61, h: 20 },

//Here we have set up with initial values three ghosts (enemy 1 – 3), one

bat, and two spike objects. Each has some or all of the following

variables:

 x - X-axis starting coordinate

 y - Y-axis starting coordinate

 w - Width in pixels

 h - Height in pixels

 s - Speed

 f – Sprite Frame

 dest – Destination

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 190 ~

Importantly, we don’t have to use all of these in every game screen, but
they are now declared and set up in readiness. Also note, the spike
objects don’t need speed, frame, or destination because they’re static.

Next, make a new file called ‘enemy.js’ and save it in the ‘js’ folder. Then
add the following code:

function enemy(sn, e, ax, bx, f1, f2, p, xy, xos, yos){

 ctx.drawImage(sprite[sn], e.x+xos, e.y+yos, e.w, e.h);

 if (xy === 1){

 if (e.x < ax && e.dest === 0){ e.x+=e.s;

 if(e.x > ax-2){ e.dest = 1;}

 }

 if (e.dest === 1){ e.x-=e.s;

 if (e.x <= bx){ e.dest = 0; }

 }

 }

 if (xy === 2) {

 if (e.y < ax && e.dest === 0){ e.y+=e.s;

 if(e.y > ax-2){ e.dest = 1;}

 }

 if (e.dest === 1){ e.y-=e.s;

 if (e.y <= bx){ e.dest = 0; }

 }

 }

 if (e.f === f1){

 setTimeout(function(){ e.f = f2; },200);

 } else {

 setTimeout(function(){ e.f = f1; },200);

 }

 if (p.x < e.x+xos + e.w && p.x + p.width > e.x+xos && p.y < e.y+yos +

e.h && p.y + p.height > e.y+yos){ lifeLost(e, p, xos); }

}

function enemyStatic(sn, e, xos, yos, p){

 ctx.drawImage(sprite[sn], e.x+xos, e.y+yos, e.w, e.h);

 if (p.x < e.x+xos + e.width && p.x + p.width > e.x+xos && p.y <

e.y+yos + e.h && p.y + p.height > e.y+yos){ lifeLost(e, p, xos); }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 191 ~

}

function lifeLost(e, p, xos){

 player.lives-=1;

 player.x = 630;

 player.y = 522;

 if ((p.x + p.width) > e.x+xos && (p.x + p.width) < e.x+xos + e.w){

player.f = 1; }

 if (p.x < (e.x+xos + e.w) && p.x > e.x+xos){ player.f = 3; }

}

Okay, as you can see, we have three functions here. The first function
draws enemies, sets their movement either on the X or Y axis as required,
animates the enemies every 200ms, and handles collisions with those
(animated and moving) enemies, the second function draws static
enemies and handles collisions with those static enemies (the spikes) and
the third function (lifeLost) gets called by the afore mentioned functions if
a collision occurs between the player and an enemy.

Let’s take a closer look:

function enemy(sn, e, ax, bx, f1, f2, p, xy, xos, yos){

//open function and pull in parameters

 ctx.drawImage(sprite[sn], e.x+xos, e.y+yos, e.w, e.h);

//draw the enemy on the canvas

 if (xy === 1){

// if horizontal movement is chosen move on X axis

 if (e.x < ax && e.dest === 0){

//if enemy x position < destination and destination not reached

 e.x+=e.s;

// move enemy at chosen speed from left to right

 if(e.x > ax-2){ e.dest = 1;}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 192 ~

//if destination is reached set destination to 1

 }

 if (e.dest === 1){

//if destination is reached…

 e.x-=e.s;

// move enemy at chosen speed from right to left

 if (e.x <= bx){ e.dest = 0; }

//if destination is reached set destination to 0

 }

 }

 if (xy === 2) {

// if vertical movement is chosen move on Y axis

 if (e.y < ax && e.dest === 0){

//if enemy y position < destination and destination not reached

 e.y+=e.s;

// move enemy at chosen speed from top to bottom

 if(e.y > ax-2){ e.dest = 1;}

//if destination is reached set destination to 1

 }

 if (e.dest === 1){

//if destination is reached…

 e.y-=e.s;

// move enemy at chosen speed from bottom to top

 if (e.y <= bx){ e.dest = 0; }

//if destination is reached set destination to 0

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 193 ~

 }

 }

 if (e.f === f1){

 setTimeout(function(){ e.f = f2; },200);

 } else {

 setTimeout(function(){ e.f = f1; },200);

 }

//if the frame is the first frame wait 200 milli-seconds and change to

the second frame. Otherwise, if the frame is the second frame wait 200

milliseconds and change to the first frame

 if (p.x < e.x+xos + e.w && p.x + p.width > e.x+xos && p.y < e.y+yos +

e.h && p.y + p.height > e.y+yos){ lifeLost(e, p, xos); }

//if a collision is detected call lifeLost function

}

Okay, then we have the second function, which is much simpler because it
is for static enemies.

function enemyStatic(sn, e, xos, yos, p){

 ctx.drawImage(sprite[sn], e.x+xos, e.y+yos, e.w, e.h);

//draw the enemy to the screen at the given parameters

 if (p.x < e.x+xos + e.width && p.x + p.width > e.x+xos && p.y <

e.y+yos + e.h && p.y + p.height > e.y+yos){ lifeLost(e, p, xos); }

//if a collision is detected call lifeLost function

}

Much simpler, but also easier to navigate for the player. Lastly, we have
the lifeLost function.

function lifeLost(e, p, xos){

//open the function and pass parameter

 player.lives-=1;

//decrease player lives by 1

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 194 ~

 player.x = 630;

//Set player x position to 630 pixels

 player.y = 522;

//set player y position to 522 pixels

 if ((p.x + p.width) > e.x+xos && (p.x + p.width) < e.x+xos + e.w){

player.f = 1; }

//if the player has collided with an enemy to the left set player sprite

frame to 1

 }

 if (p.x < (e.x+xos + e.w) && p.x > e.x+xos){ player.f = 3; ?}

//if the player has collided with an enemy to the right set player sprite

frame to 3

 }

}

Next, we need to call the enemy and enemyStatic functions just after
we’ve drawn our map. Open ‘map1.js’ and add the following function calls
just after the closing curly brace for the outer for loop (}), then save
(CTRL + S).

enemy(enemy1.f, enemy1, 335, 0, 200, 201, player, 1, 0, 0);

enemy(bat1.f, bat1, 710, 64, 203, 204, player, 1, 0, 0);

enemy(enemy3.f, enemy3, 265, 64, 200, 201, player, 2, 0, 0);

enemyStatic(202, spikes1, 0, 0, player);

Okay, finally we need to set start positions and give the player some
feedback. Open main.js’.

Add the following conditional to set enemy start positions:

 if (player.screen === 1 && boxesDrawn1 < 2) {

 boxes = boxes1;

 if (player.entered < 1){

 enemy1.x = 62; enemy1.y = 454; enemy1.dest = 0;

 bat1.x = 62; bat1.y = 70; enemy2.dest = 0;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 195 ~

 enemy3.y = 62; enemy3.dest = 0;

 player.entered = 1;

 }

 }

Insert it following this line of code:

 if (player.screen === 1 && boxesDrawn1 === 0){ drawBoxes1(); }

Add the following code just before the requestAnimationFrame(update);

instruction before the update function closing curly brace (}) and save
the file (CTRL + S):

ctx.font="20px Arial";

ctx.fillStyle = "white";

ctx.fillText(": "+player.lives, 1090, 621);

//displays current player lives at given coordinates

Now make sure to add a reference in the ‘sorcerer.html’ file for the
‘enemy.js’ file, in the usual manner. Add the following just inside the
</body> closing body tag and save (CTRL + S):

<script type="text/javascript" src="js/enemy.js"></script>

If you’ve followed this correctly, you should now have the following:

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 196 ~

At this point, we have set some basic rules in place, but as we move on
they will need to be updated. For instance, on different game screens you
will want your player to respawn in different positions, depending on your
design, we’ll need to do something when all lives are lost and your game
is over and we’ll need to add some animation for our main character for
walking, respawning, etc.

I’m pretty sure now is a good time for a well-deserved break. Grab a drink
and relax a while, before we move on.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 197 ~

GAME OVER

Open ‘enemy.js’ and add the following conditional to the end of the
lifeLost function:

 if (player.lives === 0){

 gameOver();

 }

 Then add the following gameOver function to the end of the file, and
save it (CTRL + S):

function gameOver(){

 player.screen = 20;

 ctx.drawImage(tile[16], 0, 0, 1152, 704);

 ctx.drawImage(sprite[109], 250, 200, 688, 151);

}

Finally, open ‘main.js’ and add the following conditional inside the top of
the update function:

 if (player.screen === 15){ drawMyMap1000();}◄ following this line

 if (player.screen === 20){ gameOver();}◄ add this line

Save the file (CTRL + S). Now when player.lives === 0 you get:

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 198 ~

STEP⓬ - ADDING COLLECTABLES

The first thing we need to do is bring in the sprites we need. As in all cases
before, these are available for you to download via the link below:

https://wddtrw/resources/learntocode/platformgame_collectables.zip

Once downloaded, unzip it and add the contents to the ‘sprites’ folder. To

unzip the file, double click it and then select all of the contents (CTRL + A)

and copy it (CTRL + C), then open the ‘sprites’ folder and paste (CTRL + V).

If all went well you should have the following:

https://wddtrw/resources/learntocode/platformgame_collectables.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 199 ~

Some of these sprites this time will also be used for the game monitor in
the next section.

In the now very familiar fashion, we’re going to add them to the sprites
file. Open ‘sprites.js’ and add the following code to the bottom of the file,
then save it (CTRL + S):

/* ============================

COLLECTABLES KEY:

300 - Chest

301 - Open Chest

302 - Key

303 - Ruby

304 - Emerald

305 - Gold Coin

306 - Lightning Bolt

307 - Star

308 - Potion

309 - Flask

310 - Broken Flask

311 - Crates Frame 1 - Whole

312 - Crates Frame 2

313 - Crates Frame 3

314 - Crates Frame 4

315 - Crates Frame 5

316 - Crates Frame 6 - Destroyed

317 - Barrel

318 - Score Card

319 - Shop

============================== */

for(i = 300; i < 320; i++){

 sprite[i] = new Image();

 sprite[i].src = `sprites/${i}.png`;

}

SPRITE SHEETS

It is worth noting at this point that we could and should (for the finished
game) load all of the sprites in as a single file called a sprite sheet. Sprite

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 200 ~

sheets increase the performance of your game and reduce loading and
start-up time. The game would be using a few larger images, instead of
possibly hundreds of smaller ones.

We would load in and draw from a sprite sheet like this:
let img = new Image();

img.src = '/sprites/sorcerersmountain.png';

img.onload = function() {

 init();

};

let canvas = document.querySelector('canvas');

let ctx = canvas.getContext('2d');

function init() {

 drawImage(image, sx, sy, sWidth, sHeight, dx, dy, dWidth, dHeight);

}

I have kept them separate in this book to keep each section more easily
understood, as we built each part of the game. However, in the final
game, a sprite sheet will be used and we’ll update our code accordingly.

Moving on…

Make a new file called ‘collectables.js’ and save it in the ‘js’ folder and
make sure to add a reference to the file in the ‘sorcerer.html’ file, as
below and save it (CTRL + S):

<script type="text/javascript" src="js/collectables.js"></script>

//place this below the enemy.js reference

Next open ‘assets.js’ and add the following two lines of code, to initialise
our coins settings. The first line declares a new coin object, sets the width
and height of our sprite, and sets the initial coin count to zero (0).
Secondly, we have a coinsCollected array with ten delimited values all set

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 201 ~

to zero. Each one of these values represents a coin. Zero (0) means not
collected and one (1) will mean collected. You’ll see shortly how we use
this to determine whether or not the coin in question should be drawn.

 coin = { width: 49, height: 50, count: 0 },

 coinsCollected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

Okay, back to our ‘collectables.js’ file, let’s tackle drawing and collecting
coins.

Add the following code and then save the file (CTRL + S).

var coins = [];

function addCoins(mn, w, h, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6,

y6, x7, y7, x8, y8, x9, y9, x10, y10){

let xs = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10];

let ys = [y1, y2, y3, y4, y5, y6, y7, y8, y9, y10];

for(i =0; i < 10; i++){

 coins[i] = { x: xs[i], y: ys[i], width: w, height: h, c: 0 };

 if(player.x < coins[i].x + coins[i].width

 && player.x + player.width > coins[i].x

 && player.y < coins[i].y + coins[i].height

 && player.y + player.height > coins[i].y && coinsCollected[i] == 0){

 coins[i].c +=1;

 coinsCollected[i] = 1;

 }

 if (coins[i].c == 0 && coinsCollected[i] == 0){

 ctx.drawImage(sprite[305], coins[i].x, coins[i].y, coins[i].width,

coins[i].height);

 } else if (coins[i].c > 0 && coins[i].c < 2){

 coin.count+=1;

 player.score+=10;

 }

}

The addCoins function does three jobs. It passes in required parameters,
checks if the player had collided with any of the coins, and then draws the

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 202 ~

coin if it is determined that the player hasn’t collided (collected) the
coin(s).

Let’s take a closer look:

var coins = [];

//make a new empty array and store in it in the variable coins

function addCoins(item, w, h, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6,

y6, x7, y7, x8, y8, x9, y9, x10, y10){

//open the addCoins function and pass necessary parameters for 10 coins

let xs = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10];

let ys = [y1, y2, y3, y4, y5, y6, y7, y8, y9, y10];

//separate x and y coordinate parameters into indexed arrays

for(i=0; i < 10; i++){

//iterate through 10 indexes

 coins[i] = { x: xs[i], y: ys[i], width: w, height: h, c: 0 };

//add a coin object for the coins array for each index with position and

size parameters

 if(player.x < coins[i].x + coins[i].width

 && player.x + player.width > coins[i].x

 && player.y < coins[i].y + coins[i].height

 && player.y + player.height > coins[i].y && coinsCollected[i] == 0)

 {

//if a player has a collision with a coin not yet collected…

 coins[i].c +=1;

//add 1 to the c parameter of coins for the given index

coinsCollected[i] = 1;

//update the coinsCollected array to 1 for the given index – indicating

the coin has been collected

 }

 if (coins[i].c == 0 && coinsCollected[i] == 0){

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 203 ~

//if a coinis not collected…

 ctx.drawImage(sprite[305], coins[i].x, coins[i].y, coins[i].width,

coins[i].height);

//draw the coin at the given coordinates in the given size

 } else if (coins[i].c > 0 && coins[i].c < 2){

//otherwise, if the coin has been collected

 coin.count+=1;

//add 1 to coin count – for use with the game monitor

 player.score+=10;

//add 10 to the player score – for use with the game monitor

 }

}

Now, let’s make it all work. Open ‘map1.js’ and add the following function
call, immediately following the nested for loops that draw the tile map
and save the file (CTRL + S):

addCoins(coin, 49, 50, 76, 78, 76, 142, 76, 206, 140, 332, 396, 204, 460,

204, 396, 12, 716, 332, 908, 76, 600, 78)

// call or invoke addCoins function with the given parameters

addCoins(mn, w, h, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7,

y7, x8, y8, x9, y9, x10, y10)

mn: map number

w: width of the sprite

h: height of the sprite

x and y: positions (x10)

We have a few more collectables to add to our game screen, but unlike
coins having 10, we’ll use less of the others.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 204 ~

If you have followed all of the instructions correctly so far you should
have a game screen that looks like the example below. Experiment with
the function call x and y parameters. You can place your coins anywhere
and they are all collectable, and on the collection, they add to your coin
count and score.

We could continue in the same vein and build almost identical functions
for our other collectables. As shown for the gems below:
var gems = [];

function addGems(item, w, h, x1, y1, x2, y2){

let xs = [x1, x2];

let ys = [y1, y2];

for(i =0; i < 10; i++){

 gems[i] = { x: xs[i], y: ys[i], width: w, height: h, c: 0 };

 if(player.x < gems[i].x + gems[i].width

 && player.x + player.width > gems[i].x

 && player.y < gems[i].y + gems[i].height

 && player.y + player.height > gems[i].y && gemsCollected[i] == 0){

 gems[i].c +=1;

 gemsCollected[i] = 1;

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 205 ~

 if (gems[i].c == 0 && gemsCollected[i] == 0){

 ctx.drawImage(sprite[304], gems[i].x, gems[i].y, gems[i].width,

gems[i].height);

 } else if (gems[i].c > 0 && gems[i].c < 2){

 gems.count+=1;

 player.score+=50;

 }

}

Notice how the code is almost identical, aside from the variables being
called gems instead of coins. That means we can optimise it. As much as
possible we should remove repetitive code. For instance, here we could
build one large array to hold all collectable objects. With that in mind,
let’s do a quick revisit.

Firstly, open the ‘assets.js’ file and add the following code instead of the
coin assets, then save (CTRL + S):

coin = {width:49, height:50, count:0, mn:1, sn:305, fct:0, t:'coins'},

gem = {width:40, height:45, count:0, mn:1, sn:303, fct:12, t:'gems'},

key = {width:34, height:49, count:0, mn:1, sn:302, fct:14, t:'keys'},

potion = {width:30, height:52, count:0, mn:1, sn:308, fct:16, t:'potions' },

flask = {width:38, height:49, count:0, mn:1, sn:309, fct:18, t:'flasks' },

star = {width:39, height:39, count:0, mn:1, sn:307, fct:23, t:'stars' },

bolt = {width:39, height:39, count:0, mn:1, sn:306, fct:28, t:'bolts' },

itemsCollected = [0,

0,

0,0],

These are the initial settings for all collectables.

 width

 height

 count – how many collected

 mn – map number

 sn – sprite number

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 206 ~

 fct – increase index factor

 t – the type of collectable, as a string

At the bottom of the same file, add the following for the screen 2
platform collision detection:
 var boxes2 = [];

 var boxesDrawn2 = 0;

Then save the file (CTRL + S).

Next, let’s add our function calls. Open ‘map1.js’ add the following code,
in place of the addCoins function call, then save it (CTRL + S):

//addCxs(item, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7, y7,

x8, y8, x9, y9, x10, y10)

addCxs(coin, 76, 78, 76, 142, 76, 206, 140, 332, 396, 204, 460, 204, 396,

12, 716, 332, 908, 76, 600, 78);

addCxs(gem, 720, 74, 1040, 532);

addCxs(key, 460, 10, 1024, 345);

addCxs(star, 525, 12, 973, 76, 1037, 268);

addCxs(potion, 1041, 398, 593, 332);

addCxs(flask, 13, 463);

addCxs(bolt, 425, 384);

//Now we can add up to 10 of each item, simply by stipulating x and y

coordinates and bringing in the item object from assets

Finally, open the ‘collectables.js’ file and replace all code with the
following function, to handle all collectables, then save the file (CTRL + S):

var items = [];

function addCxs(item, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7,

y7, x8, y8, x9, y9, x10, y10){

 let iw = item.width;

 let ih = item.height;

 let plw = player.width;

 let plh = player.height;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 207 ~

 let plx = player.x;

 let ply = player.y;

 item.mn = player.screen-1;

 let mn = item.mn*28+item.fct;

 let xs = [];

 xs[1+mn] = x1;

 xs[2+mn] = x2;

 xs[3+mn] = x3;

 xs[4+mn] = x4;

 xs[5+mn] = x5;

 xs[6+mn] = x6;

 xs[7+mn] = x7;

 xs[8+mn] = x8;

 xs[9+mn] = x9;

 xs[10+mn] = x10;

 let ys = [];

 ys[1+mn] = y1;

 ys[2+mn] = y2;

 ys[3+mn] = y3;

 ys[4+mn] = y4;

 ys[5+mn] = y5;

 ys[6+mn] = y6;

 ys[7+mn] = y7;

 ys[8+mn] = y8;

 ys[9+mn] = y9;

 ys[10+mn] = y10;

 for(i=0; i < 10; i++){

 items[i+mn] = { x: xs[i+mn], y: ys[i+mn], width: iw, height: ih, c: 0

};

 if(plx < items[i+mn].x + iw && plx + plw > items[i+mn].x && ply <

items[i+mn].y + ih && ply + plh > items[i+mn].y && itemsCollected[i+mn]

== 0){

 items[i+mn].c +=1;

 itemsCollected[i+mn] = 1;

 }

 if(items[i+mn].c == 0 && itemsCollected[i+mn] == 0){

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 208 ~

 ctx.drawImage(sprite[item.sn], items[i+mn].x, items[i+mn].y, iw,

ih);

 } else if (items[i+mn].c > 0 && items[i+mn].c < 2){

 item.count+=1;

 if(item.t == 'coins'){ player.score+=10; sfx[0].play(); }

 if(item.t == 'gems'){ player.score+=50; sfx[0].play(); }

 if(item.t == 'keys'){ player.score+=20; sfx[0].play(); }

 if(item.t == 'potions'){ player.score+=30; sfx[0].play(); }

 if(item.t == 'flasks'){ player.score+=100; player.lives+=1;

sfx[0].play(); }

 if(item.t == 'stars'){ player.score+=25; sfx[0].play(); }

 if(item.t == 'bolts'){ player.score+=15; sfx[0].play(); }

 }

 }

}

In the usual fashion, let’s break it down. The logic here is the same as the
addCoins function from before, but taking into consideration which
collectable we are referencing.

var items = [];

//create an empty array and store it in a variable called items

function addCxs(item, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7,

y7, x8, y8, x9, y9, x10, y10){

//open the addCxs function and pass in the collectable item assets, plus

ten sets of x and y coordinates

 let iw = item.width;

 let ih = item.height;

 let plw = player.width;

 let plh = player.height;

 let plx = player.x;

 let ply = player.y;

// set short variable names to hold player and collectable attributes.

This will allow us to make collision calculations shorter and more easily

readable

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 209 ~

 item.mn = player.screen-1;

// set the item map number to match the current player screen - 1

 let mn = item.mn*30+item.fct;

//calculate mn to ensure data is held at unique array indexes. For

instance, if the player is on screen number 1 the equation would be

0 * 30 + the item factor given in assets, screen 2 would be 1 * 30 + item

factor and so on. 30 is the chosen maximum number of collectables per

game screen, based on the following:

 coins x 10

 gems x 2

 keys x 2

 potions x 2

 flasks x 2

 stars x 5

 lightning bolts x 2

 spare indexes x 5 – if we want to add more collectables

 let xs = [];

 xs[1+mn] = x1;

 xs[2+mn] = x2;

 xs[3+mn] = x3;

 xs[4+mn] = x4;

 xs[5+mn] = x5;

 xs[6+mn] = x6;

 xs[7+mn] = x7;

 xs[8+mn] = x8;

 xs[9+mn] = x9;

 xs[mn] = x10;

//grab all X coordinates from the function parameters and add them to the

xs array at calculated indexes

 let ys = [];

 ys[1+mn] = y1;

 ys[2+mn] = y2;

 ys[3+mn] = y3;

 ys[4+mn] = y4;

 ys[5+mn] = y5;

 ys[6+mn] = y6;

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 210 ~

 ys[7+mn] = y7;

 ys[8+mn] = y8;

 ys[9+mn] = y9;

 ys[mn] = y10;

//grab all Y coordinates from the function parameters and add them to the

ys array at calculated indexes.

 for(i=0; i < 10; i++){

//iterate through loop 10 times – 1 time per possible collectable item

 items[i+mn] = { x: xs[i+mn], y: ys[i+mn], width: iw, height: ih, c: 0 };

//add item object to the items array at given coordinates and calculated

indexes

 if(plx < items[i+mn].x + iw && plx + plw > items[i+mn].x && ply <

items[i+mn].y + ih && ply + plh > items[i+mn].y && itemsCollected[i+mn]

== 0){

//if player has had a collision with an item that has not yet been

collected

 items[i+mn].c +=1;

//set the item collected value to 1

 itemsCollected[i+mn] = 1;

//update the items collected array to show the item as collected

 }

 if(items[i+mn].c == 0 && itemsCollected[i+mn] == 0){

//if the item has not been collected…

 ctx.drawImage(sprite[item.sn], items[i+mn].x, items[i+mn].y, iw,

ih);

//draw the given sprite, at the given coordinates, width and height

 } else if (items[i+mn].c > 0 && items[i+mn].c < 2){

//otherwise, if the item has been collected…

 item.count+=1;

//add 1 to the item count – for the game monitor in the next section

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 211 ~

 if(item.t == 'coins'){ player.score+=10; }

//if a coin, add 10 to the player’s score

 if(item.t == 'gems'){ player.score+=50; }

//if a gem add 50 to the player’s score

 if(item.t == 'keys'){ player.score+=20; }

//if a key, add 20 to the player’s score

 if(item.t == 'potions'){ player.score+=30; }

/if a potion, add 30 to the player’s score

 if(item.t == 'flasks'){ player.score+=100; player.lives+=1; }

//if a flask, add 100 to the player’s score and add 1 life

 if(item.t == 'stars'){ player.score+=25; }

//if a star, add 25 to the player’s score

 if(item.t == 'bolts'){ player.score+=15; }

//if a lightning bolt, add 15 to the player’s score

 }

 }

}

Great job! If you’ve followed everything correctly, refresh your browser
and press ‘s’ to start and you should have the following:

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 212 ~

Great! In the next section, we’ll look at generating some user feedback.
I think it’s that time again. Take a break. Have a brew and refresh your
batteries.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 213 ~

STEP⓭ - THE GAME MONITOR

Okay, first of all open ‘sorcerer.html’ and add the following JavaScript file
reference, just after the ‘enemy.js’ reference and save.

<script type="text/javascript" src="js/gameMonitor.js"></script>

Next, create a new file called ‘gameMonitor.js’ and then add the code
below and save the file (CTRL + S):

function gameMonitor(){

 ctx.drawImage(sprite[305], 19, 655, coin.width/1.5, coin.height/1.5);

 ctx.drawImage(sprite[307], 148, 658, star.width/1.5,

star.height/1.5);

 ctx.drawImage(sprite[302], 277, 656, key.width/1.5, key.height/1.5);

 ctx.drawImage(sprite[304], 400, 655, gem.width/1.5, gem.height/1.5);

 ctx.drawImage(sprite[303], 405, 670, gem.width, gem.height/1.5);

 ctx.drawImage(sprite[308], 533, 654, potion.width/1.5,

potion.height/1.5);

 ctx.drawImage(sprite[309], 660, 656, flask.width/1.5,

flask.height/1.5);

 ctx.drawImage(sprite[306], 788, 660, bolt.width/1.5,

bolt.height/1.5);

 ctx.drawImage(sprite[318], 896, 640, 256, 64);

 ctx.drawImage(wiz[1], 1042, 594, 30, 42);

}

All we are doing here is drawing sprites to the screen in specific locations
and slightly resizing them. In order for them to get drawn, we have to call
the function. Open ‘map1.js’ and add the following function call, just
below the function calls for the collectables:

gameMonitor();

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 214 ~

If you refresh your browser and press ‘s’ to start the game you will see
that we have placed sprites along the bottom of the screen to represent
the game collections, score, and lives variables, as shown below:

Now, we need to add numbers to give feedback to the player. Open
‘main.js’ and add the following code inside the player.screen conditional,
then, as always, save the file:

 if (player.screen != 15 && player.screen != 20){

 ctx.drawImage(wiz[player.f], player.x, player.y);

 ctx.font="20px Arial";

 ctx.fillStyle = "white";

 ctx.fillText(": "+player.lives, 1090, 621);

// after this add the following code

 ctx.font="35px Arial";

 ctx.fillStyle = "white";

 ctx.fillText(player.score, 1000, 685); // Update Score

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 215 ~

 ctx.font="20px Arial";

 ctx.fillStyle = "white";

 ctx.fillText(": "+coin.count, 60, 681);// Update Coin Count

 ctx.fillText(": "+gem.count, 444, 681);// Update Gem Count

 ctx.fillText(": "+star.count, 188, 681);// Update Star Count

 ctx.fillText(": "+potion.count, 572, 681);// Update Potion Count

 ctx.fillText(": "+flask.count, 700, 681);// Update Flask Count

 ctx.fillText(": "+bolt.count, 828, 681);// Update Bolt Count

 ctx.fillText(": "+key.count, 316, 681);// Update Key Count

 ctx.fillText(": "+player.lives, 1090, 621);// Player Lives

 }

//add counts to the game monitor – updated with

requestAnimationFrame(update); 60 frames per second (every 16.7 ms)

If you followed everything correctly, you should now have the following:

Top class! So we’ve built one game screen. It looks pretty cool, right? In
the next section, we’ll explore how to add lots more screens and how to
move the player from screen to screen.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 216 ~

STEP⓮ - ADDING MORE GAME SCREENS

The great news here is that we’ve done a lot of the hard work. Our game
screens will utilise much of the code we have already built.

Let’s get cracking with game screen number 2. Firstly, we need to decide
where each screen will sit in relation to each other. As we’ve already
created screen 1, let’s say screen 2 is to the left and screen 3 is to the
right, like so:

Next, open ‘sorcerer.html’ and add a reference for our second map below
the reference for map1, like so:

<script type="text/javascript" src="js/map2.js"></script>

Save the file (CTRL + S).

Now, create a new file called ‘map2.js’ and save it in the ‘js’ folder. Then
add the following code:

function drawMyMap2(){

ctx.drawImage(tile[16], 0, 0);

var xt = 0; // Tile Map X Index

var yt = -64; // Tile Map Y Index

var tileMap = [];

var mapNo = 0; // Map Index

tileMap[0] = [6, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6];

tileMap[1] = [6, 9, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6];

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 217 ~

tileMap[2] = [6, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6];

tileMap[3] = [6, 0, 0, 0, 0, 0, 0, 9, 0, 0, 4, 4, 4, 4, 0, 0, 4, 6];

tileMap[4] = [6, 4, 4, 4, 4, 0, 0, 0, 0, 9, 5, 5, 5, 5, 0, 0, 5, 6];

tileMap[5] = [6, 6, 6, 6, 6, 0, 9, 0, 0, 0, 5, 5, 5, 5, 0, 0, 5, 6];

tileMap[6] = [6, 0, 0, 0, 0, 0, 0, 0, 0, 9, 6, 6, 6, 6, 6, 6, 6, 6];

tileMap[7] = [6, 0, 0, 0, 0, 0, 0, 9, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0];

tileMap[8] = [6, 9, 9, 9, 0, 0, 0, 0, 0, 9, 6, 0, 0, 0, 0, 0, 9, 8];

tileMap[9] = [6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 0, 0, 1, 1, 1, 2, 3];

tileMap[10] = [13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14,

13, 14, 13, 14];

for (mapNo=0; mapNo < 11; mapNo++){

 yt+=64;

 for (xt=0; xt < tileMap[mapNo].length*64; xt+=64){

 if (xt > 1152){ xt = 0; }

 var i = tileMap[mapNo][xt/64]; // Array Variable at current

iteration position

 ctx.drawImage(tile[i], xt, yt); // Draw row - Y position px from

top of canvas

 }

}

addCxs(coin, 76, 399, 140, 399, 206, 399, 652, 79, 716, 79, 780, 79, 846,

79)

addCxs(gem, 70, 200, 76, 532);

addCxs(key, 1040, 76, 585, 525);

addCxs(star, 1037, 140, 717, 460);

addCxs(potion, 590, 461, 0, -100);

addCxs(flask, 580, 207, 0, -100);

addCxs(bolt, 457, 386, 0, -100);

gameMonitor();

enemy(enemy1.f, enemy1, 390, 66, 200, 201, player, 1, 0, 0);

enemy(enemy2.f, enemy2, 576, 66, 200, 201, player, 1, 0, 0);

enemy(enemy3.f, enemy3, 320, 66, 200, 201, player, 2, -66, 0);

enemyStatic(202, spikes1, -129, 0, player);

enemyStatic(202, spikes2, 212, -192, player);

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 218 ~

function addBox2(a,b,c,d){

 boxes2.push({ x: a, y: b, width: c, height: d });

 return

}

function drawBoxes2(){

addBox2(0,57,706,1);

addBox2(832,577,320,1);

addBox2(0,0,66,640);

addBox2(1089,0,66,384);

addBox2(192,0,960,64);

addBox2(640,386,66,256);

addBox2(640,192,256,192);

addBox2(706,386,386,64);

addBox2(1026,192,66,192);

addBox2(66,256,256,128);

addBox2(576,512,66,1);

addBox2(1024,512,128,1);

addBox2(66,512,192,1);

addBox2(449,449,66,1);

addBox2(576,386,66,1);

addBox2(386,320,66,1);

addBox2(576,256,66,1);

addBox2(66,129,320,1);

addBox2(449,192,66,1);

addBox2(66,66,66,1);

boxesDrawn2+=1;

return boxesDrawn2;

}

You should recognise all of this code. Apart from the changed parameters,
this program code is the same as for screen 1. Just as a refresher, we have
drawn the background image, then the tile map, added the collectables,
then the game monitor, the enemies, and finally, the collision boxes.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 219 ~

If you need further clarification please turn back to page 162 and
onwards, where we build ‘map1.js’. As the explanation would be virtually
identical.

The last step we need to take is a small update to ‘main.js’ to allow the
main character access to the other tile maps. For example, when the
player moves out of the left-hand side of screen one, they need to arrive
at the right-hand side of screen 2. Likewise, if the player moves out of the
right-hand side of screen 2, they need to arrive at the left-hand side of
screen 1. Open ‘main.js’ and add the following code, then save the file:

if (player.screen === 1){ drawMyMap(); }◄ following this line add the

code below

//==== SCREEN 1 ===========

if (player.x <5 && player.screen === 1){

 player.screen = 2;

 player.x = 1103;

 player.entered = 0;

}

if (player.x > 1103 && player.screen === 1){

 player.screen = 3;

 player.x = 15;

 player.entered = 0;

}

if (player.y <-20 && player.screen === 1){

 player.screen = 7;

 player.y = 525;

 player.entered = 0;

}

//==== SCREEN 2 ===========

if (player.x > 1103 && player.screen === 2){

 player.screen = 1;

 player.x = 5;

 player.entered = 0;

}

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 220 ~

if (player.y > 635 && player.screen === 2){

 player.screen = 5;

 player.y = 5;

 player.entered = 0;

}

if (player.y < -20 && player.screen === 2){

 player.screen = 8;

 player.y = 576;

 player.entered = 0;

}

Then, after this code block:

if (player.screen < 15 && player.start === 0) {player.start = 1;}

if (player.screen === 1 && boxesDrawn1 === 0){ drawBoxes1(); }

if (player.screen === 1 && boxesDrawn1 < 2) {

 boxes = boxes1;

 if (player.entered < 1){

 enemy1.x = 62; enemy1.y = 454; enemy1.dest = 0;

 bat1.x = 62; bat1.y = 70; enemy2.dest = 0;

 enemy3.y = 62; enemy3.dest = 0;

 player.entered = 1;

 }

}

Add this:

if (player.screen === 2){ drawMyMap2(); }

if (player.screen === 2 && boxesDrawn2 === 0){ drawBoxes2(); }

if (player.screen === 2 && boxesDrawn2 < 2) {

 boxes = boxes2;

 if (player.entered < 1){

 enemy1.x = 62; enemy1.y = 448; enemy1.dest = 0;

 enemy2.x = 62; enemy2.y = 192; enemy2.dest = 0;

 enemy3.y = 62; enemy3.dest = 0;

 player.entered = 1;

 }

}

Okay, let’s examine the code more closely.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 221 ~

if (player.x <5 && player.screen === 1){

 player.screen = 2;

 player.x = 1103;

 player.entered = 0;

}

//if the player’s x position is less than 5 pixels and the player is on

screen 1, change the player’s screen to 2, set the player’s x position to

1103 pixel (right-hand side), and set player entered to 0

There are conditionals for every possible exit or entry point from and to
each screen. Next, we have the following code block:

if (player.screen === 2){ drawMyMap2(); }

//if the player is on screen 2, draw the tile map

if (player.screen === 2 && boxesDrawn2 === 0){ drawBoxes2(); }

//if the player is on screen 2 and collision boxes are not drawn – draw

them

if (player.screen === 2 && boxesDrawn2 < 2) {

//if player is on screen 2…

 boxes = boxes2;

//add collision boxes for screen 2 to the boxes variable so that the

player will interact with them

 if (player.entered < 1){

//if player entered is 0…

 enemy1.x = 62; enemy1.y = 448; enemy1.dest = 0;

 enemy2.x = 62; enemy2.y = 192; enemy2.dest = 0;

 enemy3.y = 62; enemy3.dest = 0;

 player.entered = 1;

//draw the enemies and then set player entered to 1

 }

}

//close the conditional

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 222 ~

Now, refresh your screen, press ‘s’ to start, and navigate the player into
screen 2. If you followed everything correctly, your screen 2 tilemap
should look like this:

Now, in the same manner, you can add as many screens as you wish.
Ensure, as you design the game screens, that the entrances/exits match
across screens, as below:

Amazing job! To finish this exercise in the next section we’re going to add
some background music and sound effect (SFX).

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 223 ~

STEP⓯ - ADDING SOUND (SFX) AND MUSIC

There are many ways to feedback to a player as they navigate through a

game world. A game monitor, like ours, animations, and also sound. In the

real world, we experience many things through our senses. It’s the same

in the gaming world. A sound for when a player dies, an animation for

when they respawn, a sound effect when they eat something tasty, or

another for something that tastes not so good. The possibilities are

endless. The only thing that stands in your way is your imagination. The

more layers and behaviours you add to your game, the more engaging it

will become for players.

The first thing we need to do is bring in the sound files we need. As in all
cases before, these are available for you to download via the link below:

https://wddtrw/resources/learntocode/platformgame_sfx.zip

Once downloaded, unzip it and add the contents to the ‘sfx’ folder. To

unzip the file, double click it and then select all of the contents (CTRL + A)

and copy it (CTRL + C), then open the ‘sfx’ folder and paste (CTRL + V).

If all went well you should have the following:

https://wddtrw/resources/learntocode/platformgame_sfx.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 224 ~

Next we need to add references to two new JavaScript files that we’ll

create to handle our sound. Open ‘sorcerer.html’ and add the following

references just before the ‘tiles.js’ file reference:

 <script type="text/javascript" src="js/sfx.js"></script>

 <script type="text/javascript" src="js/music.js"></script>

Save the file.

Next, create a new file called ‘sfx.js’ and save it in your ‘js’ folder, as usual.

Then add the following code:

var sfx = [];

sfx[0] = new Audio('sfx/collectcoin.wav');

sfx[1] = new Audio('sfx/collectgem.wav');

sfx[2] = new Audio('sfx/collectstar.mp3');

sfx[3] = new Audio('sfx/collectpotion.mp3');

sfx[4] = new Audio('sfx/collectflask.mp3');

sfx[5] = new Audio('sfx/collectbolt.mp3');

sfx[6] = new Audio('sfx/collectkey.wav');

sfx[7] = new Audio('sfx/ghost_kill.mp3');

sfx[8] = new Audio('sfx/jump.mp3');

sfx[9] = new Audio('sfx/encounter.mp3');

sfx[10] = new Audio('sfx/Castle_Theme.mp3');

sfx[11] = new Audio('sfx/Main_Theme.mp3');

Here, we have created a new array called sfx. Then we have added our

sounds at chosen indexes so that we can use them in our game code with

ease.

Save the file (CTRL + S).

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 225 ~

Okay, now we have to add instructions to play the sound files in certain

circumstances. Let’s handle the collectables first. Open ‘collectable.js’ and

edit the following conditionals:

if(item.t == 'coins'){ player.score+=10; sfx[0].play(); }

if(item.t == 'gems'){ player.score+=50; sfx[1].play(); }

if(item.t == 'keys'){ player.score+=20; sfx[6].play(); }

if(item.t == 'potions'){ player.score+=30; sfx[3].play(); }

if(item.t == 'flasks'){ player.score+=100; player.lives+=1;

sfx[4].play(); }

if(item.t == 'stars'){ player.score+=25; sfx[2].play(); }

if(item.t == 'bolts'){ player.score+=15; sfx[5].play(); }

Add the highlighted code. This will play a different sound when you collect
a particular item.

Save the file and try it out!

Next, open ‘main.js’. Just after the opening of the main update function,

add the following two conditionals:

function update() {◄ add the following two lines of code after this

 if(player.screen === 15){ playMusic(2); }

 if(player.screen < 15 && player.lives > 0){ playMusic(1); }

Then, inside the jump controls conditional, add the following highlighted
instruction, then save the file:

 if (keys[38] || keys[32]) {

 if (!player.jumping && player.grounded) {

 player.velY = -player.speed * 2.5;

 player.jumping = true;

 player.grounded = false;

 sfx[8].play();

 }

 }

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 226 ~

Next, create a new file called ‘music.js’, add the following code and then

save it in the ‘js’ folder:

function playMusic(m){

 if(m === 1){

 sfx[11].pause();

 sfx[11].currentTime = 0;

 sfx[10].addEventListener('ended', function(){

 if(sfx[10].currentTime === sfx[10].duration - .34){

 sfx[10].currentTime = 0.1;

 sfx[10].play();

 }}, false);

 sfx[10].play();

 }

 if(m === 2){

 sfx[10].pause();

 sfx[10].currentTime = 0;

 sfx[11].addEventListener('ended', function(){

 if(sfx[11].currentTime === sfx[25].duration - .34){

 sfx[11].currentTime = 0.1;

 sfx[11].play();

 }}, false);

 sfx[11].play();

 }

 if(m === 0){

 sfx[10].pause();

 sfx[10].currentTime = 0;

 }

}

In a nutshell, this function loops the music at the end of its duration and

changes the music when the player is either on the title/game over

screens, or alternatively, a game screen. There are a few new instructions

here that we haven’t previously explored in this book.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 227 ~

They are currentTime, duration, pause() and play(). The play() method

starts playing the current audio, while the pause() method pauses the

audio, currentTime returns the current play time and duration returns the

duration, in other words the total length. These are inbuilt JavaScript

functions. They have the following syntax:

audioObject.play()

audioObject.pause()

audioObject.currentTime

audioObject.duration

Our playMusic function attempts to loop the music seamlessly by starting
it over again when the music score reaches near the end.

Next, let’s update ‘enemy.js’. Open the file and add the following just

inside the opening for the lifeLost function:

sfx[7].play();

And then add the following, just indise the opening for the gameOver

function:

if(player.lives < 1){ PlayMusic(2);}

Save the file ((CRTL + S).

Now we have music and sound effects. Why not try experimenting and

adding more of your own? If you don’t have the means to edit sound files

I would highly recommend Audacity, which you can download free of

charge.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 228 ~

You will find it at:

https://www.audacityteam.org/download/

Just download the version you require for your particular system.

STEP⓰ - CONCLUSION

We have come to the end of this exercise, but this is only the beginning of

the journey.

Ideas of things to try:

 Add more game screens

 Make new tiles and tilemaps

 Add different enemies

 Try adding different collectables, such as berries or bread. You

could also add something that you should avoid eating. Maybe if

you eat poisonous berries the player will lose a life?

 Spawning and respawning animations

 Encounter and dying animations

 Main character animations – walking, jumping

 Casting spells

 Determine how far you can fall without dying

 Add a high scores table

 Doors – Collect keys to open

 …the list goes on

As usual, you can download all associated files via the following link:

https://wddtrw/resources/learntocode/platformgame.zip

https://www.audacityteam.org/download/
https://wddtrw/resources/learntocode/platformgame.zip

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 229 ~

DEPLOYING YOUR PROJECTS ONTO A WEB SERVER

To be able to deploy your projects onto a web server and to be able to

access them via the internet, you will first have to choose a web provider.

There are some free web spaces available, but they usually come with

many restrictions. There are a few cheaper web spaces available if you

want a webspace for testing your personal projects.

You can get effective and very reasonably priced packages from the likes

of Heart Internet and Ionos 1 & 1. Packages start from only a few pounds

or dollars a month. To deploy your own code all you need is a domain

name, a hosting package, and an SSL certificate.

You can get packages from Ionos (at the time of writing this book) from

only £1 plus VAT per month for the first 6 months and then only £4 plus

VAT thereafter, which comes with a free SSL certificate. Then you can buy

a domain name for around £10 a year, but again the first year is usually

discounted to as low as £1 plus VAT.

FILE TRANSFER PROTOCOL

Once you have web hosting, you can use a system called file transfer

protocol (FTP) to upload files with ease, or if dealing with development on

a more professional basis you would use a repository, such as GIT hub,

but that is beyond the scope of this book.

In the most basic of terms, when you upload a file to a web server, any

files that are within the public html folder are available for public access.

When you connect a domain name to your webspace, if you upload a file

to the public folder called index.html or index.php, for example, you do

not need to stipulate the file name.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 230 ~

E.g. https://wddtrw.co.uk opens a file called index.php in the public folder

of the webserver.

Once you have established a connection, uploading files through FTP is

much like transferring files from one folder to another on your PC or Mac.

The only difference is that you are transferring the file to another

computer.

Here’s a screenshot of WS FTP Pro:

Once you’ve made a connection to the webserver, the left-hand window

displays files on your local machine, while the right-hand window displays

https://wddtrw.co.uk/

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 231 ~

files on the server. You can upload, download, and delete files and folders

from the webserver easily in this way.

Internet services providers (ISP’s) usually provide a control panel with FTP

access, as well as there being FTP client tools available, such as WS FTP,

FileZilla, Cyberduck, etc.

If you choose to buy web hosting you must be aware of what you wish to

use it for. With some web spaces, you get a web builder with various

tools, but they are restrictive. Generally speaking the fewer restrictions,

the more technical the systems are to use. If you’re unsure, almost all

ISP’s have great customer service and or huge databases full of frequently

asked questions.

Web servers generally fall into the following categories:

 WordPress or other web builders – No secure shell access

 Web Hosting and SSL only – No secure shell access

 Virtual Private Servers – VPS – Secure Shell access

 Dedicated Servers– Secure shell access

If you want to build a regular website and you want some quick and easy

tools and less coding, then a WordPress or web builder hosting would be

suitable for you.

If you are new to web coding and you just want to learn more about

hosting a website or web app, I would choose regular web hosting with an

SSL certificate. Make sure the SSL certificate is included, otherwise you

may find yourself paying around £60 - £100 + per year to make your

website secure.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 232 ~

If you are a more competent web developer, then you won’t go far wrong

with a virtual private server. A VPS Hosting simulates the experience of a

dedicated server even though you're still sharing the physical server with

other users. A VPS can be very cheap but requires more technical

proficiency. With SSH access you have more flexibility over how the server

is configured.

Then, if budget is of no concern and you are an experienced developer, a

dedicated server may be the right choice for you. The main reasons you

would choose a dedicated server are security and heavy traffic. A

dedicated server has all available power and flexibility all to itself, instead

of sharing resources with others.

WHAT IS SSL?

SSL stands for Secure Sockets Layer and, in short, it's the standard

technology for keeping an internet connection secure and safeguarding

any sensitive data that is being sent between two systems, preventing

intruders from reading and/or modifying any information transferred,

including potential personal details.

WHAT IS SSH?

SSH, also known as Secure Shell or Secure Socket Shell, is a network

protocol that gives users, particularly system administrators, a secure way

to access a computer over an unsecured network.

It provides access to be able to execute commands and gives flexibility

over how a server can be managed.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 233 ~

WHERE TO GO FROM HERE

In ‘Book 2’ (soon to be published) we’ll explore three more great
developments, plus we’ll continue with our Sorcerer’s Mountain game
development by adding character animations using sprite sheets, magic
powers, portals, a high score table, and much more.

For now, try designing some of your own game levels. See you in the next
book.

I’d love to hear from you. You can email me at:

learntocode@wddtrw.co.uk

If you enjoyed this book, please leave me an honest review on Amazon.
I’d very much appreciate it. If not, please contact me and tell me why, so
that I can help you and improve future editions.

My very best wishes,

Garry (Software Developer, Designer, and Author.)

mailto:learntocode@wddtrw.co.uk

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 234 ~

CHECK OUT SOME OF MY OTHER PUBLICATIONS (YES, I WRITE FICTION TOO!)

Learn To Code Book 2 is due out around April 2022. Follow me on
Amazon to keep up-to-date and get notified when it’s released.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 235 ~

For almost the same reason I fell in love with the art of computer coding, I
also found a passion for writing.

At the age of 9 years old, I had my first computer as a birthday gift and fell
in love with the art and creativity of computer coding. I found it enabled
me to create characters, game worlds, and other magical features, only
limited by the depths of my imagination.

Likewise, writing for me opened the door to the same wonderful universe
of imagination and with me sitting at the helm, the ability to navigate and
explore under my complete and unhindered control.

One of my favourite quotes which sums up the driving force behind my
passions is:

"Everything you can imagine is real." - Pablo Picasso.

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 236 ~

INDEX

ABOUT THE AUTHOR III, 2

ADDING IMAGES III, 21

ADDING STYLES TO THE IMAGESIV,

43

ANIMATED............................ 23, 190

APP I, 2, 9, 11, 15, 16, 22, 29, 32,

34, 36, 41, 43, 46, 51, 53, 56, 57,

58, 59, 60, 61, 62, 63, 64, 73, 76,

92, 95, 96, 101, 102, 103, 104,

105, 110, 120, 121, 125, 128, 130,

131, 139, 142, 147, 150, 151, 230

ARRAY 75, 76, 77, 78, 79, 80, 81,

82, 84, 85, 86, 124, 126, 127, 135,

136, 137, 138, 156, 157, 164, 169,

185, 188, 199, 201, 204, 207, 208,

209, 223

ARRAYS 84, 85, 86, 176, 201

ASSETS V, 153

BACKGROUND ... 11, 12, 22, 23, 36,

37, 39, 64, 65, 66, 67, 68, 70, 72,

97, 130, 142, 143, 144, 151, 152,

154, 155, 156, 161, 164, 217, 221

BROWSER 2, 8, 9, 10, 11, 14, 19, 20,

39, 51, 59, 61, 68, 77, 101, 103,

104, 108, 109, 117, 125, 150, 162,

170, 173, 210, 213

BUILDING 36, 52, 101, 149, 154,

155, 156, 157

CASCADING STYLE SHEETS 10

CASCADING STYLE SHEETS III, 10

CODE ... 2, 5, 6, 8, 9, 11, 12, 13, 15,

16, 17, 18, 19, 20, 21, 22, 26, 28,

29, 30, 32, 36, 43, 54, 58, 61, 64,

66, 75, 76, 77, 79, 82, 88, 89, 90,

92, 93, 94, 95, 96, 97, 101, 103,

105, 108, 109, 111, 117, 120, 121,

122, 123, 126, 128, 131, 132, 144,

153, 154, 155, 156, 157, 158, 159,

160, 162, 163, 168, 170, 172, 176,

181, 184, 186, 188, 189, 194, 198,

199, 200, 204, 205, 212, 213, 215,

217, 218, 219, 220, 223, 224, 225,

228

CODING 4, 7

CODING EDITORIII, 7

COLLECTABLES V, 197, 198

COLOUR DESIGN IV, 34

COLOUR WHEEL 34

COMMENTING 16

COMPUTER 3, 4, 7, 51, 98, 229,

231, 234

CONST 55, 73, 74, 75, 76, 77, 78,

79, 84, 85, 86, 88, 89, 90, 92, 93,

98, 99, 103, 105, 106, 123, 124,

126, 131, 132, 133, 134, 135, 136,

138, 139, 144, 145, 146, 156

CONVENTION USED IN THIS BOOK

 ... III

COUNTDOWN TIMER IV, 95, 96

CREATING A PLATFORM GAME . V,

148

CREATING A WEB APP IV, 51

CSS .. 5

CSS ... I, V, 2, 5, 8, 10, 14, 15, 16, 18,

20, 28, 30, 34, 36, 38, 43, 59, 66,

67, 70, 90, 91, 107, 108, 109, 111,

112, 113, 116, 117, 118, 120, 131,

139, 148, 151, 152

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 237 ~

CURLY BRACES 18, 88

CURSOR 65, 69, 70

DELETE V, 132

DEPLOYING YOUR PROJECTS VI

DEVELOPER 2, 231

DISPLAY 8, 18, 21, 22, 23, 37, 40,

60, 64, 68, 69, 89, 92, 93, 94, 96,

97, 102, 103, 125, 130, 131, 135,

136, 137, 139, 140, 141, 144, 145,

146, 151, 160

DIV 21, 22, 29, 30, 32, 33, 41, 42,

46, 47, 48, 55, 56, 58, 59, 60, 68,

69, 71, 73, 78, 81, 82, 91, 95, 96,

97, 103, 104, 105, 110, 111, 128,

129, 134, 136, 139, 140, 141, 150,

151

DIVISION 22

DOWNLOAD 6

DOWNLOADING AND

PREPARING IMAGES III, 26

ELEMENT . 12, 29, 31, 38, 44, 66, 67,

68, 70, 71, 72, 79, 97, 104, 111,

112, 113, 114, 115, 116, 117, 123,

124, 129, 131, 143, 145, 146, 151,

152, 153

ENGINE IV, 73

ENVIRONMENT 52, 73, 158, 174

EXERCISE 24, 27, 30, 48, 49, 53, 59,

66, 73, 101, 109, 139, 141, 146,

147, 148, 162, 165, 187, 221, 227

FILE STRUCTURE .. III, IV, V, 7, 25, 27,

52, 149

FILE TRANSFER PROTOCOL . VI, 228

FILES .. 6

FONT . 10, 11, 12, 13, 15, 16, 18, 37,

39, 64, 65, 66, 67, 69, 72, 96, 97,

120, 121, 122, 130, 142, 143, 194,

213, 214

FONT COLOUR 12

FORM ATTRIBUTES IV, 112, 113

FUNCTION III, IV, 15, 76, 87

FUNCTIONALITY48, 51, 53, 103

GAME MONITOR V, 212

GAME OVER V, 196

GAME SCREENSVI, 215

GOOGLE 5, 26, 39, 47, 51

H1 TAG ... 12

HEADER .. 29, 32, 36, 39, 41, 46, 57,

58, 59, 63, 64, 68, 69, 105, 110,

128, 139, 140

HEIGHT 10, 22, 23, 36, 37, 39, 43,

65, 66, 69, 70, 71, 97, 115, 116,

130, 142, 143, 151, 152, 153, 154,

158, 159, 160, 162, 169, 170, 171,

176, 178, 181, 183, 184, 185, 189,

192, 199, 200, 201, 202, 203, 204,

205, 206, 207, 209, 212, 217

HELLO WORLD 7, 8

HELLO WORLD4, 7, 10, 13, 21

HELLO, WORLD!III, 7

HEXADECIMAL 12, 34, 144

HOVER 43, 44, 65, 70, 142, 143

HREF 5, 9, 29, 30, 32, 33, 41, 42, 45,

46, 47, 48, 58, 59, 110, 128, 139,

140, 141, 150, 151

HTML ... 5, 7, 8, 9, 10, 11, 13, 16, 18,

21, 26, 27, 28, 32, 33, 36, 41, 43,

46, 48, 53, 55, 56, 58, 95, 101,

102, 103, 105, 110, 111, 125, 128,

129, 134, 137, 139, 140, 141, 149,

150, 151, 152, 162, 194, 199, 212,

215, 223, 228

HTML FILE III, V, 27, 150

HTML FORM.......... IV, 110, 120, 122

IMPLEMENTING THE CSS IV, 34

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 238 ~

IMPLEMENTING THE HTML

STRUCTURE IV, 56

INSTRUCTIONS 26, 154, 161, 203,

224, 225

INTRODUCTION 2, 4

INTRODUCTION III

JAVASCRIPT ... I, 2, 8, 14, 15, 16, 20,

53, 54, 55, 56, 57, 59, 61, 66, 69,

71, 73, 74, 75, 77, 82, 95, 98, 101,

102, 103, 104, 105, 107, 108, 109,

111, 113, 116, 117, 123, 126, 129,

138, 148, 150, 151, 154, 155, 212,

223, 226

JAVASCRIPT ... III, IV, V, 15, 73, 131,

132, 144, 158

JSON .. IV, 53, 54, 55, 56, 57, 59, 61,

75, 80, 107, 109, 122, 125, 126,

132, 133, 134, 135, 136, 137, 138,

153

JSON FILE IV, 53, 61, 122

LESSONS ... 2

LET13, 16, 21, 24, 29, 34, 36, 39, 50,

52, 54, 55, 56, 57, 58, 66, 67, 74,

75, 78, 79, 83, 84, 88, 89, 91, 93,

94, 104, 111, 125, 126, 128, 129,

132, 133, 134, 135, 136, 137, 138,

144, 149, 155, 159, 163, 168, 170,

172, 174, 175, 176, 177, 199, 200,

201, 202, 203, 204, 205, 206, 207,

208, 215, 219, 226

LINK . 5, 9, 21, 28, 29, 30, 31, 32, 34,

41, 42, 43, 44, 45, 46, 47, 48, 52,

53, 58, 59, 62, 66, 110, 128, 150,

151, 187, 197, 222, 227

LOCAL STORAGE IV, V, 125, 131

LOCATION 104, 125, 134, 137, 149

MAC 2, 8, 52, 109, 229

MARGIN . 11, 12, 22, 23, 36, 37, 39,

43, 64, 65, 66, 67, 69, 70, 71, 72,

96, 130, 131, 142, 143, 152

MUSICVI, 222

MY OTHER PUBLICATIONS ...VI, 233

NAVIGATION V, 139, 142, 144

NOTEPAD 2, 4, 7, 9

NUMBERS 54, 82, 86, 112, 115, 137,

164, 213

OBJECTS 54, 86, 175, 188, 189, 204

OPACITY 10, 20, 44, 66, 71, 91, 144

OPERATOR V, 179, 180, 181

OVERFLOW 64, 67, 68, 151, 152

PADDING 10, 37, 40, 64, 65, 67, 68,

69, 71, 97, 130, 142

PAGE LAYOUT DESIGN III, 28

PC 2, 52, 229

PIXEL 22, 97, 143, 152, 155, 164,

167, 186, 220

PLATFORM GAME V, 148, 150, 151,

153

POINTER 65, 69

POSITION 20, 65, 66, 70, 71, 79, 82,

84, 91, 130, 142, 143, 172, 183,

190, 191, 193, 201, 216, 220

PROGRAMMING . 3, 4, 5, 7, 52, 53,

107, 176

PROGRAMMING ENVIRONMENT

 ... 52

REFERENCE V, 154, 157

RESULTS ... 20, 23, 40, 52, 55, 56, 57,

58, 60, 63, 65, 70, 71, 73, 74, 75,

76, 89, 95, 98, 100, 101, 103, 104,

160, 185

RGB ... 12, 34

RULES .. 9, 10, 11, 12, 14, 20, 23, 39,

44, 67, 68, 69, 111, 112, 116, 117,

LEARN TO CODE HTML, CSS & JAVASCRIPT

 ~ 239 ~

120, 121, 131, 139, 142, 143, 151,

152, 183, 195

SAVE . 8, 11, 21, 23, 26, 93, 96, 101,

111, 122, 129, 171, 172, 187, 196,

215, 223, 224, 226

SEARCH . 26, 31, 39, 51, 59, 60, 112

SELECTOR PATTERN 43

SFX VI, 149, 221, 222

SOUND VI, 222

SPRITE OBJECTS V, 157

SPRITE SHEETS V, 198

SSH ... VI, 231

SSL VI, 228, 230, 231

STRING 54, 55, 56, 81, 82, 83, 86,

116, 125, 179, 205

STRINGS 54, 82, 86

STYLESHEET . 5, 9, 29, 32, 41, 46, 58,

59, 110, 128, 150, 151

SYNTAX ... 5

SYNTAX HIGHLIGHTING 5

TARGET ... 46

TILE MAPS V, 154, 167

TILES V, 154

TITLE SCREEN V, 160

TRANSITION 66, 71, 91

URL .. 5, 30, 31, 40, 45, 48, 114, 154,

157, 168

USER ADMINISTRATION

FUNCTIONS IV, 107

VARIABLE 18, 54, 73, 74, 77, 78, 83,

84, 90, 98, 124, 126, 135, 136,

137, 138, 145, 146, 153, 156, 164,

176, 181, 182, 201, 207, 220

VISUAL STUDIO CODE 2, 4, 7

WEB SERVER VI

WELL-FORMED HYPERLINKS .. IV, 45

WELL-FORMED IMAGE ELEMENTS

 .. IV, 40

WHAT IS A JSON FILE? IV, 53

WHAT IS A WEB APP AND HOW IS

IT DIFFERENT FROM A WEBSITE?

 .. IV, 51

WHAT IS AN ARRAY? IV, 84

WHERE TO GO FROM HERE VI, 232

WHY USE JSON? IV, 54

WIDTH ... 5, 6, 10, 36, 37, 39, 43, 58,

59, 65, 66, 68, 69, 71, 91, 97, 110,

115, 116, 120, 121, 122, 128, 130,

131, 142, 143, 153, 154, 158, 159,

160, 162, 169, 170, 171, 175, 176,

178, 181, 183, 184, 185, 189, 190,

192, 193, 199, 200, 201, 202, 203,

204, 205, 206, 207, 209, 212, 217

WINDOWS 2, 8

WORD WRAPPED. 6

Z-INDEX .. 15, 16, 18, 66, 71, 91, 142

		2022-02-15T20:00:44+0000
	Preflight Ticket Signature

