
PHP 8 Basics
For Programming and
Web Development
—
Gunnard Engebreth
Satej Kumar Sahu

PHP 8 Basics
For Programming and Web

Development

Gunnard Engebreth
Satej Kumar Sahu

PHP 8 Basics: For Programming and Web Development

ISBN-13 (pbk): 978-1-4842-8081-2 ISBN-13 (electronic): 978-1-4842-8082-9
https://doi.org/10.1007/978-1-4842-8082-9

Copyright © 2023 by Gunnard Engebreth, Satej Kumar Sahu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Mark Powers
Copy Editor: Mary Behr

Cover designed by eStudioCalamar

Cover image by Hugol Halpingston on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit www.apress.com/source-code.

Printed on acid-free paper

Gunnard Engebreth
Madison, WI, USA

Satej Kumar Sahu
Bangalore, India

https://doi.org/10.1007/978-1-4842-8082-9

This book is dedicated to my wife Erica
and to my boys Trip and Wyatt.

Also, you the reader.
Thank you!

Jesus looked at them and said,
“With man this is impossible,

but with God all things are possible.”
—Matthew 19:26!

v

Table of Contents

About the Authors ��xiii

About the Contributor ���xv

Acknowledgments ���xix

Introduction ���xxi

Chapter 1: Getting Started ��1

Why Use PHP? ���1

Using PHP��2

Why PHP, Ngnix, and MySQL? ���3

Installing Docker ���4

Windows ��5

Mac OS ��6

Linux ��7

Installing Docker-Compose ���10

The Development Environment ���11

Summary���14

Chapter 2: PHP Fundamentals ��15

Variables ���15

Using Errors As Tools ���18

Objects ��22

vi

Verbs: GET and POST ���25

Summary���30

Chapter 3: Functions, Classes, and Traits ���33

OOP ���34

Reviewing Class Definitions ��35

Class Visibility ��37

A Closer Look at Class Inheritance ���38

Polymorphism and Abstract Classes ���40

Constants ���42

Constructs ���43

Traits ��44

Namespaces ��46

Summary���48

Chapter 4: Data and Data Types ��49

PHP Data Types ���49

PHP Data Types: Scalar Types ���50

Boolean ���51

Integer ���52

Float ��52

String ��53

PHP String Functions ��60

substr() ��60

strlen() ��62

str_replace() ��62

trim() ���63

strpos() ��64

strtolower() ���65

Table of ConTenTs

vii

strtoupper() ���66

is_string() ��66

strstr() ���67

PHP Data Types: Compound Types ��68

Array ���68

Object ��71

PHP Data Types: Special Types ��71

NULL ��71

resource ��72

Summary���72

Chapter 5: Form Data ��75

PHP POST Form ���76

PHP GET Form ���80

Summary���83

Chapter 6: Arrays ��85

PHP Indexed and Associative Arrays ���85

PHP Multidimensional Arrays ��91

PHP Array Functions ��91

array_change_key_case ���93

array_chunk ��93

array_column ��94

array_combine ��95

array_count_values ���95

array_diff_assoc ��96

array_diff_key ���96

array_diff_uassoc��97

array_diff_ukey ���97

Table of ConTenTs

viii

array_diff ���98

array_fill_keys ���99

array_fill ��99

array_filter ���100

array_flip ���101

array_intersect_assoc ���101

array_intersect_key ��102

array_intersect_uassoc ���102

array_intersect_ukey ��103

array_intersect ��104

array_is_list ���104

array_key_exists ���105

array_key_first ��105

array_key_last ���106

array_keys ���106

array_map ���107

array_merge_recursive ���108

array_merge ��108

array_multisort ��109

array_pad ��110

array_pop ��110

array_product ��111

array_push ��111

array_rand ���112

array_reduce ���113

array_replace_recursive ���113

array_replace ��114

array_reverse ��115

Table of ConTenTs

ix

array_search ���115

array_shift ���116

array_slice ���117

array_splice ���118

array_sum ���120

array_udiff_assoc��120

array_udiff_uassoc��121

array_udiff ���122

array_uintersect_assoc ���123

array_uintersect_uassoc ���123

array_uintersect ��124

array_unique ���125

array_unshift ���126

array_values ��126

array_walk_recursive ��127

array_walk ���127

array ��128

arsort ���129

assort ���130

compact ���131

count��131

current ���132

each ���133

end���134

extract ���134

in_array ���136

key_exists ���137

key ���137

Table of ConTenTs

x

krsort ���137

ksort ��138

list ��139

natcasesort ��139

natsort ���140

next ��140

prev ���141

range ���142

reset ��142

rsort ���143

shuffle ���144

sizeof ���144

sort ��144

uasort ��145

uksort ��146

usort ��146

Summary���147

Chapter 7: Sessions and Cookies ���149

PHP Sessions ��149

PHP Cookies ��160

Summary���163

Chapter 8: Objects ��165

Output ���167

Summary���169

Table of ConTenTs

xi

Chapter 9: PHP Exceptions, Validation, and Regular Expressions ����171

PHP Exceptions ���172

PHP Form Validation ��177

PHP Regular Expressions ��184

Regular Expressions Modifiers ��185

Regular Expression Metacharacters ��185

Regular Expression Square Brackets ��186

Regular Expression Quantifiers ���187

Regular Expression Functions ���187

Summary���191

Chapter 10: PHP and MySQL Working Together ��������������������������������193

PHP Communication with MySQL ���194

PHP Communication with the MySQLi Method ��194

PHP Communication with the PDO Method ���197

MySQLi Advantages ��198

PDO Advantages ��198

PHP Connection to a Database ��199

Summary���209

Chapter 11: Data ���211

Planning for a New Database ��211

Creation of a New Database ���214

Summary���219

Chapter 12: Website with a DB ���221

Summary���229

Table of ConTenTs

xii

Chapter 13: Introduction to Frameworks ���231

Introduction to Frameworks ��231

Pros and Cons of Frameworks ��232

Pros of Using Frameworks ��232

Cons of Using Frameworks ��234

MVC Pattern ��235

Different Layers of a Framework ��236

Different Types of Frameworks ���237

Role of Composer ��238

Introduction of PHP Standard Recommendation (PSR) �������������������������������������239

PHP Frameworks���241

Choosing a Framework ��242

Summary���245

Chapter 14: Introduction to Laravel ��247

Introduction to Laravel ��248

Installing Laravel ���248

Database Setup and Configuration ���250

Database Migrations��253

Controller Route ���259

Registration View Form ���264

Storing User Data in a Database��267

Summary���271

Chapter 15: Introduction to Symfony ���273

Introduction to Symfony ��273

Installing Symfony ��279

Creating a Symfony Application ���281

Summary���283

Table of ConTenTs

xiii

Chapter 16: A Basic Symfony Application ��285

Creating a New Symfony Project ��285

Database Setup and Configuration ���288

Controller Route ��300

Registration View Form ���305

Storing User Data in a Database ���308

Summary���313

 Index ���315

Table of ConTenTs

xv

About the Authors

Gunnard Engebreth began coding at the age

of 11 through a “Learning BASIC” book given

to him by his father. Technology was changing

fast, and Gunnard rode the wave from 1200 to

56k baud modems. Logging into BBSs, Prodigy,

CompuServe, Delphi, and IRC, he could see

the world changing and he wanted to be a part

of it. He soon got involved in the ANSI/demo

scene, making several application generators

for many groups in the 1990s. Visual Basic was

his next language of choice, allowing him to develop “tools” for online

systems such as AOL. This introduced many aspects of development,

security, and user interfaces while they were still in their infancy. Once

the World Wide Web arrived via Mindspring in Atlanta, Georgia, Gunnard

quickly joined in the race for the Web. Learning HTML, PERL, and Linux

(Slackware at the time), he began to build his skill set, which led to a

full-time systems administrator position at the age of 20 (2000) at

Activegrams/Silverpop. Gunnard has moved around the IT industry

from SAN/NAS storage at IBM to custom WordPress sites for marketing

companies, but one thing has stayed the same: his passion for learning

and problem solving. Gunnard also DJs drum and bass as Section31, plays

drums, and bakes bread (www.gunnard.org).

xvi

Satej Kumar Sahu works in the role of Senior

Software Data Architect at Boeing. He is

passionate about technology, people, and

nature. He believes that through technology

and conscientious decision making, each of

us has the power to make this world a better

place. In his free time, he can be found reading

books, playing basketball, and having fun with

friends and family.

abouT The auThors

xvii

About the Contributor

Massimo Nardone has more than 26 years

of experience in security, web/mobile

development, and cloud and IT architecture.

His true IT passions are security and Android.

He has been programming and teaching how

to program with Android, Perl, PHP, Java, VB,

Python, C/C++, and MySQL for more than 25

years. He holds a Master of Science degree

in Computing Science from the University

of Salerno, Italy. He has worked as a Chief

Information Security Office (CISO), software

engineer, chief security architect, security executive, OT/IoT/IIoT Security

Leader, and architect for many years.

xix

I would like to dedicate this book to my parents for always believing in

and having patience with me while I pursued my interest in technology,

and gave me the freedom to explore and try different things. Also, thanks

to my sister Lipsa for always being beside me whenever I needed her. I

would like to thank all my teachers for being with me during my journey,

Runish for the foundational mentoring support at the start of my career,

Mindfire Solutions for my first career opportunity, and to all with whom I

had an opportunity to interact and learn from. Last but not least I would

like to thank Mark for the awesome opportunity to write my first book and

the wonderful team at Apress for all their support without whom this book

would not have been possible.

Acknowledgments

xxi

Introduction

Developing web pages and applications is still, after many years, one of the

most fascinating endeavors for developers. The idea of taking a simple idea

and developing it, seeing it coming alive and imagining the experience the

user will have is something very magical.

The experience of programming as web developer should, of course,

also be easy, user-friendly, and flexible—all characteristics of the

programming language this book is all about: PHP version 8.

The first version of PHP was created by Rasmus Lerdorf in 1994 and

he mainly used it on his home page to keep track of who was looking at

his online resume. In 1995, the first public version was published as the

Personal Home Page Tools.

In the beginning, PHP was just a simple programming language with

a very easy parser engine that only understood a small number of utilities

and macros.

PHP usage grown. In 1996, about 15,000 web sites were developed with

PHP; by 1997, it was up to 50,000. In 1999, about 1 million web sites were

developed with PHP. At the time of writing, 78 million of web sites have

been developed with PHP to give you a perspective of how popular this

programming language has become. Why?

Simple. Because after many years it is still easy to use, user-friendly,

and clearly organized. This helps would-be programmers easily

understand and run PHP commands and functions.

We want to help PHP beginners and would-be developers explore

the new features added to this version 8 and see how easy, flexible, and

powerful it can be to develop new web sites and applications.

xxii

You will find all the basic information about how to install and

configure PHP version 8.

All basic PHP concepts like data types, functions, regular expressions,

form handling and verification, sessions, cookies, and filters are

introduced and demonstrated with many examples.

We also introduce the basic information of object-oriented

programming and its classes and objects.

This book also provides some simple examples about how to use

PHP version 8 with one of the most powerful and used databases for

developers, MySQL. You learn how to develop an entire web application

using PHP version 8 and MySQL.

You also learn about PHP frameworks and why they are so important

to use. This book focuses on just two of the many PHP frameworks

available, Symfony and Laravel, and the development of web applications

following the model–view–controller architectural pattern.

 Who This Book Is For
The book assumes you have some web development and DB handling

knowledge. The book is written mainly for the beginning web developer

who wants to learn how to use PHP version 8 and how it can be used with

MySQL and PHP frameworks like laravel and Symfony. It also assumes you

have some knowledge of programing language frameworks and how and

when you should use them with PHP.

 Prerequisites
The examples in this book were built with PHP version 8. We also used

MySQL for Ubuntu Linux version 22.04 DEB Bundle. As a testing tool,

we used the latest Postman API client version available on the Web, but

you are free to use any testing tool you feel comfortable with. Finally, we

InTroduCTIon

xxiii

introduced and utilized two different PHP Frameworks named Laravel and

Symfony, which will be needed for the examples of this book.

 Downloading the Code
The source code for the examples in this book is available at www.github.

com/apress/php8-basics.

InTroduCTIon

http://www.github.com/apress/php8-basics
http://www.github.com/apress/php8-basics

1

CHAPTER 1

Getting Started
PHP is the de facto programming language used to serve billions (“BILL”

not “MILL”) a month. PHP has grown from a hodge-podge collection of

scripts that could be used to stitch together a functional website into the

backbone of several billion-dollar companies influencing how industry

works across the globe. Yes, there are other languages out there that do

many things, but you are not reading this book to understand them! You

chose to step into the world of PHP and join the network of developers

who focus on solutions, community, and the advancement of PHP. This

chapter of the book will cover the why, when, and how of using the

PHP programming language. It will also introduce some programming

development environments and describe how to install Docker, which is

an open platform for developing, shipping, and running applications.

 Why Use PHP?
FACT: PHP runs the Web. This is a bold statement but just look at these

numbers:

• Facebook: 25.7 billion monthly estimated visits

• Wikipedia: 15 billion monthly estimated visits

• Yahoo: 4.8 billion monthly estimated visits

• Flickr: 65.44 million monthly estimated visits

• Tumblr: 328.9 million monthly estimated visits

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_1

https://doi.org/10.1007/978-1-4842-8082-9_1

2

Any one of those sites above pull impressive numbers, but when

combined, they are pretty hefty statistics. Even if you have a loyalty to

another programming language, you can’t deny the use of PHP as a

workhorse in these sites. While we can see that large corporations have

come to trust the language, what about average users like you and me?

Over 39.5% of all websites on the Internet are run on WordPress. Let that

sink in for a minute. Almost 40% of all websites are served up on a CMS

(open source, no less) that is developed in PHP.

PHP is exploding yearly in terms of demand. A quick check on any job

search website will give you thousands of results.

PHP is continuously growing, with scheduled releases and a thriving

community of developers maintaining technological relevance.

PHP is the most exciting AND the most practical programming

language you can get started with today.

Admittedly, we may have our biases.

 Using PHP
PHP is mainly used by developers in two ways. One method is to organize

and deliver data from a data source (i.e., a MySQL database) to a webpage.

Think of Facebook or Twitter. The content that you see on these sites is

stored somewhere in a database and needs to be retrieved and then parsed

or organized, ultimately leading to a front-end display to the user. Your

cousin’s baby pictures with 40 likes must be gathered, the likes must be

collected and names attributed to them, and then they are ready to pop up

on your timeline. Depending on the infrastructure, this data can be stored

in one location or multiple places, tied together with unique identifiers.

We may be getting ahead of ourselves here, but we are trying to convey the

fact that the information you see on webpages is cultivated by PHP from

information stored in databases. PHP is the toolbox you will use to build

these powerful applications.

Chapter 1 GettinG Started

3

We mentioned that there are two main ways to use PHP. The other

way is on the command line. There are usually several scripting languages

on a server that can be used to perform all sorts of tasks. Bash, Python,

and Perl come to mind, but PHP can be used in the same way. If you have

not already, go to the GitHub repo linked from this book’s apress.com

product page and look at the Chapter 1 link. From here, you will set up the

development environment in order to look at and run these PHP scripts.

Let’s get the development environment spun up so you can see PHP

in action.

PHP is a server-side scripting language and therefore needs a server

with the appropriate settings and resources to run. While PHP comes

natively installed on many operating systems, it can be installed or

upgraded on its own. Examples of other server-side languages are Python,

Ruby, and Perl. The opposite of this is client-side languages. They are

processed in the browser and are based on JavaScript. Examples of client-

side languages are Vue.js, jQuery, and Node.js.

 Why PHP, Ngnix, and MySQL?
Let us introduce you to your new best friends, at least in terms of your

daily exposure to them. As a developer, you will need to work with each of

these new friends intimately. PHP (as we have discussed) is the language

in which we will be writing our scripts. Nginx is the web server, which

allows for web pages to be served when a user accesses specific URLs on

a server. When you go to gunnard.org, for example, the webserver at the

hosting site looks at the URL (www.gunnard.org) and checks to see if there

are any associated www settings (in Nginx) for this website. If there are, the

software (Nginx) looks for the document root setting and directs the user

to that location. Once there, the first thing the server will look at, unless

otherwise specified, is an index.html or index.php page. The index.html/

php paradigm is fairly standard across the board and serves as a failsafe

Chapter 1 GettinG Started

http://www.gunnard.org

4

to protect directories from being viewed across the Web. For example, if

you have an assets/ directory with private information that is publicly

accessible, say gunnard.org/assets, but there is no index.html, this will

be viewable to anyone, and they will see a list of files in that directory. If

a blank index.html is placed there, the file will be shown instead. Within

Nginx you can set the priority and order in which Nginx looks for these

default files. When using PHP, it is necessary to specify that Nginx looks for

index.php over index.html, for example.

In order to use your development environment, you need a tool called

Docker. Docker provides your computer (the host machine) with the

ability to masquerade as a web server, in your example, without creating a

virtual machine separate from your host environment. This might sound

like the exact thing you WANT to do, which it is, but Docker goes about it

in a slightly different way that is more robust, easier to manage, and less

invasive than your typical virtual machine. Think of Docker as software

that allows for a container to dress up like a specific type of computer

or server. This container is separate from your host system but also uses

the resources (directories, CPU, memory) of your host without actually

changing or creating a new machine. The inner workings of Docker vs.

virtual machines is outside of the scope of this book and frankly could

take an entire book to explain it much better than we just did. The bottom

line is that with Docker, we control and can use the beneficial parts of a

web server without having to create, install, and maintain a real or virtual

server. Plus, as of printing, this is what 99% of development shops use; this

is very industry standard.

 Installing Docker
Let’s get Docker installed on your operating system of choice. Here’s how

to do it.

Chapter 1 GettinG Started

5

 Windows
Go to https://docs.docker.com/docker-for-windows/install/ and

click the “Docker Desktop for Windows” button to download Docker, as

shown in Figure 1-1.

Figure 1-1. The Docker Desktop for Windows download button

 1. Double-click Docker Desktop Installer.exe to run

the installer.

 2. When prompted, ensure the Enable Hyper-V

Windows Features. If you have previously

configured WSL and are comfortable with it,

then make sure the “Install required Windows

components for WSL 2” option is selected on the

Configuration page.

 3. Follow the instructions in the installation wizard to

authorize the installer and proceed with the install.

 4. When the installation is successful, click Close to

complete the installation process.

 5. If your admin account is different to your user

account, you must add the user to the docker-

users group. Run Computer Management as an

Chapter 1 GettinG Started

https://docs.docker.com/docker-for-windows/install/

6

administrator and navigate to Local Users and

Groups ➤ Groups ➤ docker-users. Right-click to

add the user to the group. Log out and log back in

for the changes to take effect.

Docker Desktop does not start automatically after installation. To

start Docker Desktop, search for Docker, and select Docker Desktop in the

search results. When the whale icon in the status bar stays steady, Docker

Desktop is up, running, and accessible from any terminal window.

 Mac OS
Go to https://docs.docker.com/docker-for-mac/install/, shown in

Figure 1-2.

Figure 1-2. Download options for Docker for Mac

Double-click Docker.dmg to open the installer and then drag the

Docker icon to the Applications folder, as shown in Figure 1-3.

Chapter 1 GettinG Started

https://docs.docker.com/docker-for-mac/install/

7

Figure 1-3. Moving the Docker application to the Applications folder

Double-click Docker.app in the Applications folder to start Docker.

(In Figure 1-4, the Applications folder is in grid view mode.)

Figure 1-4. Docker Applications folder

The Docker menu in the top status bar indicates that Docker Desktop

is running and accessible from a terminal.

 Linux
Go to https://docs.docker.com/engine/install/. Here you will find

links to instructions on how to install Docker on several popular Linux

Chapter 1 GettinG Started

https://docs.docker.com/engine/install/

8

distributions. If you are using Debian/Ubuntu, you can follow these

instructions (https://docs.docker.com/engine/install/ubuntu/):

 1) Ensure that any older installation is removed from

the system.

<code>

 sudo apt-get remove docker docker-engine docker.io

containerd runc

</code>

 2) Update the apt package index and install packages

to allow apt to use a repository over HTTPS.

<code>

 sudo apt-get update

 sudo apt-get install \

 apt-transport-https \

 ca-certificates \

 curl \

 gnupg \

 lsb-release

</code>

 3) Add Docker’s official GPG key.

<code>

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo

gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

</code>

 4) Use the following command to set up the stable

repository. To add the nightly or test repository,

add the word nightly or test (or both) after the

word stable.

Chapter 1 GettinG Started

https://docs.docker.com/engine/install/ubuntu/

9

<code>

echo \

 "deb [arch=amd64 signed-by=/usr/share/keyrings/docker- archive-

keyring.gpg] https://download.docker.com/linux/ubuntu \

 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.

list.d/docker.list > /dev/null

</code>

 5) Update the apt package index and install the latest

version of Docker Engine and container.

<code>

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

</code>

If you have any difficulties or need to install a specific version of

Docker for your system, please visit https://docs.docker.com/engine/

install/ where they cover many more options and configurations than is

possible in the scope of this section.

Once Docker is installed, you will need to install docker-compose.

Compose is a tool for defining and running multi-container Docker

applications. Compose allows you to define an application within the

confines of a YAML (Yet Another Markup Language) file. This allows you to

spin up all of the defined services for your Docker container with a single

command. This is often used within development teams to ensure version

control and maintain use of third-party applications. Other features of

Compose are

• Multiple isolated environments on a single host

• Preserving volume data when containers are created

• Only recreating containers that have changed

Chapter 1 GettinG Started

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

10

• Variables and moving a composition between

environments

More on these features can be found at https://docs.docker.com/

compose/#features.

 Installing Docker-Compose
Mac and Windows users that have installed Docker Desktop can skip the

installation step because Compose is included with the installed package.

 1) For Linux users, run this command to download the

current stable release of Docker Compose:

<code>

sudo curl -L "https://github.com/docker/compose/releases/

download/1.29.1/docker-compose-$(uname -s)-$(uname -m)" -o /

usr/local/bin/docker-compose

</code>

 2) Apply executable permissions to the binary.

<code>

sudo chmod +x /usr/local/bin/docker-compose

</code>

Note if the command docker-compose fails after installation,
check your path. You can also create a symbolic link to /usr/bin or
any other directory in your path.

Chapter 1 GettinG Started

https://docs.docker.com/compose/#features
https://docs.docker.com/compose/#features

11

For example,

<code>

sudo ln -s /usr/local/bin/docker-compose /usr/bin/

docker-compose

</code>

Optionally, install command completion for the bash and zsh shells.

Test the installation.

<code>

$ docker-compose --version

</code>

 The Development Environment
Now that you have Docker installed and ready to go, you need the YAML

files for your project to set up your development environment. Go to

https://github.com/apress/php8-basics and click the Download ZIP

button, shown in Figure 1-5.

Figure 1-5. yaml files for your project

Chapter 1 GettinG Started

https://github.com/apress/php8-basics

12

Once you have the ZIP file downloaded, unzip it in a directory of your

choosing. We used ~/ (my users home directory) ~/coding. Once

unzipped, your directory structure should look something like Figure 1-6.

Figure 1-6. Unzipped project folder

Inside this directory will be all the information needed for Docker to

start the development environment.

Go ahead and run

<code>

docker-compose up

</code>

and watch Docker spin up (Figure 1-7).

Figure 1-7. Running the docker-compose command

Next, point your browser to

<code>

http://localhost:8000

</code>

Chapter 1 GettinG Started

13

and you should see the table of contents page for this book and

verification that the database has connected successfully. Go to the

command prompt and type

<code>

docker ps

</code>

This command shows you any containers that Docker has or is

currently using. Here you can see the mysql, nginx, and beginning php

containers. One last thing to verify is that you can run PHP from within the

PHP container. From the command line, type

<code>

docker exe -ti php-app bash

</code>

This connects you, much like ssh, to the container itself. From here, go

into the Chapter1 directory.

<code>

cd Chapter1

</code>

Type

<code>

php first_script.php

</code>

You should see this output:

<code>

Output here

</code>

Chapter 1 GettinG Started

14

 Summary
In this chapter, you learned in general the why, what, and how of using the

PHP programming language in the development world. We introduced

why you want to use PHP, Nginx, and MySQL and their benefits. As

next steps, you learned how to install the Docker tool, which is an open

platform for developing, shipping, and running applications. Finally,

you saw why you needed the YAML files for your project to set up your

development environment.

In the next chapter, we will explain how programming languages use

variables to store and manipulate data and to build useful tools in PHP.

Chapter 1 GettinG Started

15

CHAPTER 2

PHP Fundamentals
In order to build useful tools in PHP, you need to know how to manipulate

data. Programming languages use variables to store and manipulate data.

In this chapter, you will learn how programming languages use

variables to store and manipulate data and to build useful tools in PHP.

Additionally, you’ll explore the following topics:

• Using errors as tools

• Objects

• Verbs: GET and POST

 Variables
PHP has a few rules when it comes to variables:

• A variable must start with the $ sign, followed by the

name of the variable.

• A variable name must start with a letter or the

underscore character.

• A variable name cannot start with a number.

• A variable name can only contain alpha-numeric

characters and underscores (A-z, 0-9, and _).

• Variable names are case-sensitive ($pants and $PANTS

are two different variables).

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_2

https://doi.org/10.1007/978-1-4842-8082-9_2

16

Unlike other programming languages, PHP does not have a specific

command for declaring variables. You must pay attention to where and

how variables are declared and used.

Let's write some code and see how the browser handles it. Go into your

beginning-php8-and-mysql directory and under chapter 2, create a file

called newtest.php. Inside of this file, write

<code>

<p>this is normal text</p>

<?php

echo '<p>This is created by php';

?>

<p>this is normal text again</p>

</code>

The code above shows three lines. The first is normal HTML, the

second is running PHP code, rendering HTML. The third is more HTML

but after/outside the PHP code snippet. You can go between PHP and

HTML as many times as you like within a .php file. This can get messy, so

you want to limit this to very clean and precise code elements. Now create

a file called vartest.php and open it up. Type this code into the file and

save it:

<code>

<?php

echo "<p>variable test</p>";

$color = "blue";

$item = "pants";

echo "Today I am using $item which happen to be the color

$color";

</code>

Navigate to localhost:8000/chapter2/vartest.php and look at the

results (Figure 2-1).

Chapter 2 php Fundamentals

17

Figure 2-1. URL result web page

Ok, let's catch up on what you are doing here. First, you are declaring

the PHP script with

<code>

<?php

</code>

The next line you use echo. This is a PHP command that makes up

one of the most basic ways to display text from PHP to the browser. It does

one thing: sends output to the browser or command prompt. Notice that

after echo, you use the double quote (“) as the delimiter to separate this

portion of text and begin the line of text you wish to output to the screen.

When you are done with the text, you end it with another double quote.

The double quote is the delimiter that marks the beginning and end of a

line of text you want to use. As humans, we can easily determine text or

a sentence that is written down or on a screen. Computers need special

markings, delimiters in this case, to determine where the text boundaries

are. This is true for the echo command or for setting a variable, as in the

next line. $color is the name of a variable you want to use and "blue" is

the value you are setting it to. In this particular case, $color is a variable

of type string. A string is any text that you want to use that will not be used

to compute, say, a mathematical value. Once you have the value of "blue"

set in $color, you can use echo to display it on the page. You do this again

with the variable $item when you set its value to "pants". You will notice

as well that each line of code ends with a semicolon (;). In PHP, this is how

you tell the interpreter to stop reading the line and move on. You will get

an error any time you leave out the ending semicolon.

Chapter 2 php Fundamentals

18

Speaking of errors, let’s go ahead and get comfortable with errors and

how they can be useful to us instead of annoyances.

 Using Errors As Tools
In PHP, you do not always see the errors that occur. This is because there

are three different levels with configurations for how and where to display

them. Let’s go back into vartest.php and add these lines to the top:

<?php

error_reporting(E_ALL);

ini_set("display_errors", 1);

//this next line is an error

echo "these pretzels are making me thirsty;

echo "<p>variable test</p>";

$color = "blue";

$item = "pants";

echo "Today I am using $item which happen to be the color

$color";

Before you run this, let’s explain what you are doing.

error_reporting(E_ALL); is telling PHP to display ALL errors. Here

is the full list of options available for error_reporting:

<?php

// Turn off all error reporting

error_reporting(0);

// Report simple running errors

error_reporting(E_ERROR | E_WARNING | E_PARSE);

Chapter 2 php Fundamentals

19

// Reporting E_NOTICE can be good too (to report uninitialized

// variables or catch variable name misspellings ...)

error_reporting(E_ERROR | E_WARNING | E_PARSE | E_NOTICE);

// Report all errors except E_NOTICE

error_reporting(E_ALL & ~E_NOTICE);

// Report all PHP errors

error_reporting(E_ALL);

// Report all PHP errors

error_reporting(-1);

// Same as error_reporting(E_ALL);

ini_set('error_reporting', E_ALL);

The next line of ini_set() is used in PHP to overwrite configuration

options that are set in the php.ini file. This is helpful when you need to do

one-off configurations or are on a server where you do not have access to

the ini file. The next line is the error line. Do you see it? Go ahead and pull

up the file in your browser and see what it says.

<code>

Parse error: syntax error, unexpected token ">" in /var/www/

chapter2/vartest.php on line 8

</code>

Using this error, you can begin to hunt down the bug. This error is

saying that line 8 has an unexpected >. Take a look at line 8 of your code:

<code>

echo "<p>variable test</p>";

</code>

Chapter 2 php Fundamentals

20

This line looks perfectly fine to me. What PHP is telling us is that

you have done something, in this case set a delimiter for text, on the line

BEFORE line 8 and now the perfectly acceptable > on line 8 is unexpected.

You need to look at line 6 where you will find the closing delimiter of “

missing at the end of your text. Go ahead and add “ to the end of the line

and refresh your page, which should now render with no errors.

Now that you can create and assign variables, render text to the screen,

and trigger/understand errors that show up, let’s start building some

pages. This is the reason you picked up this book, right? Go back to your

Chapter2 directory and open the file main.php.

<code>

<?php

error_reporting(E_ALL);

ini_set("display_errors",1);

$title = "Beginning PHP 8 & MySQL";

$content = "Here is the main content for this page";

$html ="

<!doctype html>

<html lang='en'><?php

<head>

 <meta charset='utf-8'>

 <title>$title</title>

 <meta name='description' content='Basic HTML5 Page'>

 <meta name='author' content='Your name'>

 <link rel='stylesheet' href='css/styles.css?v=1.0'>

</head>

Chapter 2 php Fundamentals

21

<body>

$content

</body>

</html>";

echo $html;

</code>

These are the basic elements needed for a HTML 5 webpage with PHP

included. You are declaring that you want errors to be turned on at the

top, as you have done before. The next lines set two variables, one for the

title and one for the content. The rest of the file sets the variable $html

to the entirety of HTML that you want displayed on the page. Within this

code you see the $title and $content variables placed where you want to

display them on the page. Go ahead and open your browser to this page to

see how it looks. This can get a little redundant if you have many pages that

follow the same look and feel presented with the HTML. Therefore, you

will use this page as a template that you can call and just switch out the

values you want displayed. Open up main2.php in your editor.

<code>

<?php

//error_reporting(E_ALL);

//ini_set("display_errors",1);

$title = "Beginning PHP 8 & MySQL";

$content = "Here is the main content for this page";

$html =include_once "inc/template2.php";

</code>

Here you are introducing the include_once function. By calling

include_once, you tell PHP that you want to load a specific file into this

area. By separating out the design aspect (HTML) from the PHP, you can

view your code better and reuse the HTML elements in other PHP files.

Chapter 2 php Fundamentals

22

Building on this example, let’s take it a step further and include multiple

PHP files in your template. In main2.php, change template.php to

template2.php and refresh the page.

In your case, you first include header.php, located within the inc/

directory. When you use this method of including PHP snippets around

the HTML in your file, you are essentially creating a template. This

template (main.php), if used in another file, will still include a header,

contents, and footer. Let’s create a file called second.php by copying the

main.php file and naming it second.php.

Now that you have come to an understanding with your templates on

how to separate them and use them to your advantage, let’s take a look

at your variables. So far you have been using variables for trivial content,

colors, and item names. What if you want to store someone’s name and

address? It’s perfectly correct to do something like this:

<code>

$firstName = "gunnard";

$lastName = "engebreth";

</code>

This works fine until you want to start passing this information around

between functions in your program. Basically, envision passing your friend

a handful of Skittles vs. a bag of Skittles. Your friend still gets the Skittles in

the end, but one way is clean, optimized, and all Skittles are guaranteed to

reach your friend. This brings us to objects.

 Objects
In PHP, an object is a specific set of data as defined in a class. In the code

example above, you would say that the information would belong to a class

of User. You would define that class as such:

<code>

Chapter 2 php Fundamentals

23

<?php

 class UserClass

 /* User variables */

 var $firstName;

 var $LastName;

 /* Member functions */

 function setFirstName($firstName){

 $this->firstName = $firstName;

 }

 function getFirstName(){

 echo $this->firstName;

 }

 function setLastName($lastName){

 $this->lastName = $lastName;

 }

 function getLastName(){

 echo $this->lastName;

 }

 }

 </code>

To create a new user you can call

<code>

$user = new UserClass();

$user->setFirstName('gunnard');

$user->setLastName('engebreth');

var_dump($user);

</code>

Let’s take a look at this code.

Chapter 2 php Fundamentals

24

$user = new UserClass(); does exactly what it shows: the variable

$user is now going to have the configuration and format that you

described in the class UserClass. This also demonstrates the importance

of proper naming in PHP. With one look at this line of code, you can have

a high percentage of certainty that this variable $user is most likely going

to be associated with $UserClass somehow and less likely to be associated

with a class named $DumpTruckClass.

The next two lines call a method (function) you create within

UserClass. These specific types of methods, Get____ and Set___, are

known as helpers and also commonly referred to as the class “getters” and

“setters.” These methods simplify the task of setting values within the object.

The last line is a PHP-specific function used heavily in debugging

code. var_dump() shows you exactly what is in a variable and what type

of variable you are analyzing. In your example, calling var_dump shows all

the information within the object. $user is the bag of Skittles and $user-

>firstName is the individual Skittle.

Now, how do you use this all together? You need to specify the class

information in one file and include it in another file. Thankfully, you

already know how to do that. Let’s open up main3.php.

<code>

<?php

$title = "main3 php file";

require "UserClass.php";

$user = new UserClass;

$user->setFirstName = 'gunnard';

$user->setLastName = 'engebreth';

var_dump($user);

error_reporting(E_ALL);

ini_set("display_errors",1);

$html =include_once "inc/template2.php";

</code>

Chapter 2 php Fundamentals

25

You have already reviewed what the first two lines do, so set up and set

the variable $user as a part of the class UserClass. The next two lines set

the first name and last name. If you run this script on the command line or

browser, you can verify this through the var_dump() function. Figure 2-2

shows what you should see.

Figure 2-2. Code result web page

This is a fundamental stage in development. You have created an

object, assigned values, and can display the information on the page. Now

you need to make it dynamic by adding user interaction via forms.

Forms are more than just what you use to comment on someone’s

picture on Facebook. Forms are the method by which a user can interact

with a program. The user can directly communicate with the code and the

database you have created. With this kind of access, great detail must be

put into validation and sanitization of input, which we will get to later. For

now, just get comfortable with getting and using input. Let’s get technical

about receiving data from the user.

 Verbs: GET and POST
HTTP (Hyper Text Transfer Protocol) is what connects the Web that

you know today. This is the protocol or method of agreed-upon

communication that allows for servers, PHP, and users to talk to one

Chapter 2 php Fundamentals

26

another. There are a lot of specifications within HTTP for everything

including error handling, expected standard document formats, and

request methods. These methods are defined in five verbs:

GET

The GET method requests a representation of the

specified resource. Requests using GET should only

retrieve data.

POST

The POST method is used to submit an entity to the

specified resource, often causing a change in state or

side effects on the server.

PUT

The PUT method replaces all current representations

of the target resource with the request payload.

DELETE

The DELETE method deletes the specified resource.

PATCH

The PATCH method is used to apply partial

modifications to a resource.

You will be focusing on GET and POST but rest assured, you will be using

the others as you build your REST API.

Point your browser to http://localhost:8000/chapter2/main4.

php?pants=123. Notice in the URL you have main4.php?pants=123. When

the page loads, it should look like Figure 2-3.

Chapter 2 php Fundamentals

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH

27

Figure 2-3. URL result web page

At the top is var_dump() and you can see that the info you have in

the URL is now available to you in PHP as the variable $userVars. This is

available to you through the HTTP verb GET and in PHP you use the global

variable $_GET. GET specifically allows for the transfer of data through the

URL. You can send multiple values as well. Change the URL to include

<code>

http://localhost:8000/chapter2/main4.php?pants=123&dog=poodle&f

ood=spaghetti

</code>

Refresh the page and you will now see that Pants, Dog, and Food have

values set to them. The other method of transmitting data from the user to

your code is using POST.

The POST verb behaves in nearly the same way but does not use the

URL, thereby keeping the data you are transmitting a bit more secure. In

order to see the POST functionality, open main5.php and take a look.

<code>

<?php

$userVars = $_POST;

$title = "main5 php file";

require "UserClass.php";

$user = new UserClass;

$user->setFirstName = 'gunnard';

$user->setLastName = 'engebreth';

Chapter 2 php Fundamentals

28

var_dump($userVars);

error_reporting(E_ALL);

ini_set("display_errors",1);

$html =include_once "inc/template3.php";

</code>

The main things that changed in this code are that you are using the

PHP global $_POST instead of $_GET and you include template3.php. Let’s

look at the tempalte3.php file.

<code>

$content = include('contentPost.php');

</code>

Template3 calls in a specific content piece called contentPost.php.

<code>

<form action="<?php echo htmlspecialchars($_SERVER["PHP_

SELF"]);?>" method="post">

<input type="text" id="firstName" name="firstName" />

<input type="text" id="lastName" name="lastName" />

<input type="submit" name="submit">

</code>

Here you see the differences in that allow you to use $_POST. You

define a form and set the action to the file (main5.php) itself. This code

you see allows for the form to be used in multiple places by dynamically

finding the name of the file that houses the form and putting it there.

$_SERVER['PHP_SELF'] is the file currently calling this script and

htmlspecialchars is a PHP function that removes HTML because it can

be used for malicious or evil intent. The two lines underneath declare the

firstname and lastname boxes to collect the users input. Finally, you have

a Submit button that triggers the form to be used by your code. Go ahead

and fill it out and then look at the resulting page (Figure 2-4).

Chapter 2 php Fundamentals

29

Figure 2-4. Code result web page

You can see in your var_dump that the variables for first name and last

name came through, and if you look at your URL, you see that it is clean and

no variables are listed. In your examples, you used GET and POST to submit

data to your PHP. Technically, you could use GET to submit this form as well,

but you should really not do that. These two methods, GET and POST, are (as

listed above) part of a larger group of verbs that are used currently in modern

development in APIs. An application programming interface (API) is a method

of allowing access for developers to interact with an application. Think about

it this way: stock tickers, tweet streams, an Instagram plugin for WordPress--

these all are individual pieces of software that connect to other things:

• Stock ticker -> Bloomberg API

• Tweet stream -> Twitter API

• Instagram gallery -> Instagram API

The software will send specifically formatted (typically JSON or XML)

data to the API, which will authenticate the software’s access and return

the requested data. The software will then take that data, and read and

reformat it into a useable form. Referring back to the API verbs above, the

software will send a GET request to an API and expect back a response with

the requested data. This is the stock, Twitter, or Instagram information we

spoke about. Software can then POST data to the API in order to create or

start a process. A POST request is used to create a new Twitter account or

to actually make a trade with Bloomberg. PUT and PATCH can be used as

Chapter 2 php Fundamentals

30

“update” methods that can alter a users’ status or swap out profile pictures,

for example. DELETE is primarily used to remove or destroy data from the

API. While it is completely possible to only use GET and POST for an API,

the separation of verbs and (as you will see) routes based off of these verbs

will allow for a much easier and better experience for the developer using

the given API. If you are using POST to create, update, delete, and search,

this can get messy because you will need to not only look at whether the

request is GET/POST but now also a new variable needs to be set to specify

the intended action (create, update, delete, search, etc.). Clear and direct

methods of communication not only help humans communicate but can

keep things straightforward with software, too.

 Summary
Let’s review the ideas you’ve learned so far.

 1) Variables store information for PHP to use. This

information can be set within the code by the

developer or received from outside by the user.

Variables start with a $ and should be named

something relevant to their purpose.

 2) PHP and HTML can be intermixed. It is acceptable

to use PHP within HTML through opening and

closing PHP with <?php and ?>. Keeping the code

clean and readable should be a priority.

 3) echo prints out text or variables

 4) Errors should be embraced as tools for debugging.

Errors can be turned on/off and configured through

 a. error_reporting(E_ALL);

 b. ini_set("display_errors", 1);

Chapter 2 php Fundamentals

31

 5) include_once() allows you to pull in code from

another file, enabling you to separate out PHP and

HTML into separate files.

 6) PHP objects allow you to group sets of information

into one container or object.

 7) GET and POST are used to receive user input. GET

is transferred through the URL in plain text and

POST is not.

 8) GET and POST are two of the five verbs commonly

used by APIs to communicate.

In the next chapter, you will learn how to declare and use classes and

functions (including traits, which is what a class is to an object). Also,

object-oriented programming (OOP) will be explained.

Chapter 2 php Fundamentals

33

CHAPTER 3

Functions, Classes,
and Traits
So far, you have been using PHP for simple top-down scripting.

In this chapter, you will learn how to declare and use classes and

functions (including class definitions, visibility, inheritance, and traits).

Also, object-oriented programming (OOP) will be introduced and

explained.

The real power of PHP comes with the ability to declare and use

classes and functions. As a quick overview, classes are (as you saw in the

last chapter) definitions for objects to use when being created. The class

definitions then turn into objects that you can use to store and manipulate

data. Functions are reserved words within PHP that you declare, define,

and call in order to do small or complex tasks. The reason you separate out

these tasks into functions is so that you can abstract them and their usage.

Abstract is a fancy way of allowing for a function to be called by multiple

sources for one purpose. Instead of writing a function in multiple classes to

do the exact same thing, you can set that function apart in a class and call

it whenever you need. The duplication of code is one thing to look out for

when refactoring or even working through your logic.

With these concepts in mind, this chapter will focus on the world of

OOP, which models the application and development around real-world

objects such as users, cars, colors, or even vegetables.

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_3

https://doi.org/10.1007/978-1-4842-8082-9_3

34

This chapter will cover the following topics:

• Object-oriented programming (OOP)

• Class definitions

• Class visibility

• Class inheritance

• Polymorphism and abstract classes

 OOP
The three basic concepts in object-oriented programming are

• Encapsulation: This is concerned with the optics or

exposure of information between classes and the rest of

the application. The benefits of this include

• Complexity reduction: Data that is not needed

outside of certain classes is not available outside of

those classes.

• Data protection: Allowing access to data

through GET/SET methods creates a flexible and

maintainable codebase.

• Polymorphism: The ability to have one form of data

structure with multiple uses and implementations

• Class extension and abstraction allow for this.

• Inheritance: Classes have the ability to share

information between each other depending on

visibility and the parent/child relationship.

These concepts are more than just a specific method of declaring

methods and properties. This is about thinking, structure, data flow, and

Chapter 3 FunCtions, Classes, and traits

35

coding methodology. It’s comparable to the difference between knowing

the rules of chess and knowing what a London opening is and how to

defend yourself. These concepts drive how you think about data, usage,

and manipulation. While object-oriented programming can be taught, it

is best learned through hands-on development. OOP might seem rigid

and forceful at first, but there will come a time where the freedom and

creativity that come from defining, extending, and abstracting make sense

and begins to drive your development process.

 Reviewing Class Definitions
Let’s review the class definition from above:

<code>

<?php

 class UserClass

{

 /* User variables */

 var $firstName;

 var $LastName;

 /* Member functions */

 function setFirstName($firstName){

 $this->firstName = $firstName;

 }

 function getFirstName(){

 echo $this->firstName;

 }

 function setLastName($lastName){

 $this->lastName = $lastName;

 }

Chapter 3 FunCtions, Classes, and traits

36

 function getLastName(){

 echo $this->lastName;

 }

 }

</code>

Class definitions begin with the PHP keyword class followed by the

name and then a pair of curly braces. Within these curly braces is where

the properties (variables) and methods (functions) belonging to the

class are defined. Within classes, functions are referred to as methods.

This is a whisky/bourbon situation. All bourbon is whiskey, but not all

whisky is bourbon. All methods are functions, but not all functions you

see are methods. The name of the class, in your case UserClass, has a few

restrictions as to how it can be named:

• It can’t be a reserved word.

• It must start with a letter or underscore.

PHP has many reserved words. You have already seen class, function,

and any PHP function such as var_dump or echo used in PHP. These words

cannot be reused as variables or names for what is dubbed “userland” use.

Any class, method, function, or variable created by a user and not built into

PHP is deemed “userland.” This is not necessarily as derogatory as it may

sound but just a way of keeping the two worlds separate. In your example,

you have variable declarations for

<code>

 /* User variables */

 var $firstName;

 var $LastName;

</code>

Chapter 3 FunCtions, Classes, and traits

37

 Class Visibility
Class properties and methods have what is referred to as visibility. This

visibility can be defined by prefixing the declaration of the property. For

example,

<code>

public $firstName = 'Abraham';

protected $lastName = 'lincolin';

private $nickName = 'beardyface';

</code>

In the example class above, you use var to declare your property,

which defaults to public. The reasoning for visibility levels is for control

over how data flows within your code. PHP allow you to do something

like this:

<code>

$user = getUser($userId);

function showUserName() {

 $user = getUser(4);

 var_dump($user);

}

var_dump($user);

showUserName();

</code>

Here you are getting quite sloppy with your variables and logic, and

PHP is trusting that you know what you are doing. PHP provides three

levels to keep internal function variables and external variables separate

from one another: public, protected, and private.

Chapter 3 FunCtions, Classes, and traits

38

 Public

Public properties have no restrictions for calling them in any scope. This

means that a public property of an object can both be retrieved and also

modified anywhere in code. As stated, this is the default behavior when

declaring a class property using var. While this is acceptable in terms of

functional PHP code, you should define the visibility of a property when it

is declared.

 Protected

The second level is protected, which means that the class that they are

declared in or any class that extends them can access the property.

 Private

The last level, private, is like protected but takes it up a notch by only

allowing access to the class it is defined in. Any subclass or extended class

cannot access this property.

There is more to visibility, such as making properties and methods

MORE visible and extending them as well. These topics are for another day

but if you wish to read up on them, php.net has great information on all

things visibility.

 A Closer Look at Class Inheritance
Inheritance in PHP is specifically from a parent class to a child class. A

child class can inherit any public or protected properties or methods that

have been defined in their parent class. Inheritance occurs when a new

class “extends” the previous parent class. For example, you can extend

your UserClass class from before.

<code>

Chapter 3 FunCtions, Classes, and traits

39

class RegisteredUser extends UserClass {

 function setRegistrationNumber($number) {

 $this->registrationNumber = $number;

 }

 function getRegistrationNumber() {

 return $this->registrationNumber;

 }

}

$currentUser = new RegisteredUser();

$currentUser->setFirstName('Robert');

$currentUser->setLastName('Paulson');

$currentUser->setRegistrationNumber('1234xyz');

</code>

As you see, currentUser, having been based or “extended” from

UserClass, has access to the methods setFirstName and setLastName.

currentUser is being extended with setRegistrationNumber, allowing

you to extend the class specifications of UserClass.

In other words, extending a class is the equivalent to adding guacamole

to an already existing type of burrito. If you order a #2 burrito from the

menu, it already has its ingredients defined and set. This is like your

parent class, UserClass. Now, by adding on a non-predefined ingredient,

you are extending the burrito. The burrito is essentially the same but

with something more that you specified. Rightly so, the restaurant can’t

call this burrito a #2 anymore, because it is not, and it needs to name it

something else, like you have done with RegisteredUser. RegisteredUser

is essentially the same as UserClass but with something extra, something

that you have defined. Extending does not end with the entire class, but

anything that is public or protected. Properties (variables) and methods

(functions) can all be extended as long as the class visibility allows for it.

Now let’s talk about polymorphism by looking at abstract classes.

Chapter 3 FunCtions, Classes, and traits

40

 Polymorphism and Abstract Classes
Unlike extending a class, an abstract class is like a self-serve ice cream

sundae bar. You declare that you want an ice cream sundae but all you

have is an empty container. Until you put in the ice cream and all the

toppings you want, it is not a complete sundae. Either way, you create a

new sundae and at the end a new sundae is what you get. The ability to

customize the object (sundae) is what makes it abstract. With abstract

classes, you can define in the parent class a method name and properties

but you allow for the child class to define what the method actually does.

This also creates the dependency on the child class to define this method.

Let’s take a look:

<code>

<?php

// Parent class

abstract class Candy {

 public $name;

 public function __construct($name) {

 $this->name = $name;

 }

 abstract public function slogan() : string;

}

// Child classes

class Skittle extends Candy {

 public function slogan() : string {

 return "$this->name! - Taste the rainbow!";

 }

}

class Twix extends Candy {

 public function slogan() : string {

Chapter 3 FunCtions, Classes, and traits

41

 return "$this->name - Which side are you?";

 }

}

class KitKat extends Candy {

 public function slogan() : string {

 return "$this->name - Gimmie a break!";

 }

}

// Create objects from the child classes

$skittle = new Skittle('Skittles');

echo $skittle->slogan();

$kitkat = new KitKat('KitKat');

echo $kitkat->slogan();

?>

</code>

In this example, you define the abstract parent class Candy with

a property for the name and two methods. The construct method is

standard and takes a string for name. The second is the slogan method,

which is (for all intents and purposes) empty and returns a string. What

you are doing with this is carving out the name slogan in the class but

allowing the child classes to define what that method is actually doing.

You are keeping consistency within the objects you create by doing this. As

long as the object is created from a class that extends Candy, you know that

there is a slogan method, and if you are the one that extends the class, you

know that you need to define what this method does.

Chapter 3 FunCtions, Classes, and traits

42

 Constants
Classes also can have constants. Constants are properties or methods

that can be defined within a class and used (depending on visibility) from

anywhere.

<code>

<?php

class MessageClass {

 const EXIT_MESSAGE = "Thank you for coming to my

TEDDY talk!";

 public function thankyouBye() {

 echo self::EXIT_MESSAGE;

 }

}

$byebye = new MessageClass();

$byebye->thankyouBye();

?>

"Thank you for coming to my TEDDY talk!"

</code>

There are two ways in which this constant can be accessed. From

within the class, self:: can be used, which you did in your example.

The other way is to reference the class name and the double ::, such

as MessageClass::EXIT_MESSAGE. Constants can be useful in the

organization of properties and ensuring continuity of values across your

application. In your example, you have a message class to house all of

your application messages. This way you only have one class to call and

one class to ever change if there is a need to update a message. If there are

one-off messages, you can always extend the class and adjust the verbiage

from there. The main point of using constants in this way is to keep your

data structured and organized for the best use as you develop and to keep

Chapter 3 FunCtions, Classes, and traits

43

the duplication of code down to a minimum. There is no need for multiple

variables with the same “welcome” message if you can set it in one class

and reference it from anywhere.

 Constructs
Classes offer constructors and destructors. The former is called and

“constructs” at the time a new object is created and the latter “destructs” as

soon as there are no other references to a particular object. A constructor

method looks like this:

<code>

<?php

class UserClass {

 function __construct() {

 print "In UserClass constructor\n";

 }

}

</code>

Note that the construct() method has __ in front of the name. Prior to

PHP 8, classes with a method named the same as the class would interpret

that method as the constructor. This will now result in an E_DEPRECATED

error but still run as a constructor. If both __construct() and a method

with the same name as the class are defined, __construct() will be called.

Constructors are used to set certain parameters to properties when

new objects are created. This can easily be done now in PHP 8 with

constructor property promotion.

<code>

<?php

class Point {

 public function __construct(

Chapter 3 FunCtions, Classes, and traits

44

 protected int $x,

 protected int $y = 0

)

 {

 }

}

</code>

A destructor method would look like the following:

<code>

<?php

class UserClass {

 function __destruct() {

 print "Destroying " . __CLASS__ ."\n";

}

}

</code>

While this destructor only prints the status Destroying UserClass,

a more practical use is to clear the cache, unset() variables, or other

housekeeping items.

 Traits
Then there are traits. Think about a trait as what a class is to an object, the

trait is to a class. You can define several methods in a trait and use them in

several different classes as long as the classes reference back to the trait.

The reason you use traits in PHP is because PHP is a single inheritance

language. This means that while you can define a class and all of its

methods and any subclass you extend from that will have access to those

methods, you can’t reach over to another class and borrow a method.

Chapter 3 FunCtions, Classes, and traits

45

The subclass cannot inherit methods from another class. To prevent you

from duplicating code all over the place, you can reference a trait from

multiple subclasses to utilize a single method. Here is a simple example:

<code>

<?php

trait userFunctions {

 public function message1() {

 echo "user message1";

 }

}

class UserClass {

 use userFunctions;

}

class UserClass2 {

 use userFunctions;

}

$user = new UserClass();

$user2 = new UserClass2();

$user->message1();

$user2->message1();

</code>

This prints out the message “user message1 user message1” from two

separate classes. This is very useful when dealing with large systems that

share functionality but not necessarily the same data.

Lastly, we must discuss namespaces and their function within OOP.

Chapter 3 FunCtions, Classes, and traits

46

 Namespaces
Namespaces allow for the labeling of classes so that when you reference

them within your code, you can specify the class you wish to use from

within its namespace. You can also use namespaces to group together

classes for better organization. Namespaces also allow for the use of the

same name in different classes. Here is how a namespace is declared:

<code>

<?php

namespace Pants;

</code>

A namespace declaration must be the first code within a PHP file.

Everything after the namespace declaration is considered within this

namespace.

<code>

<?php

Namespace Pants;

class PantsMaker {

 $color = 'blue';

 $size = 'large';

 public function pantsLabel($name) {

 $label = "These pants are size: $size , color: $color

named: $name";

 return $label;

 }

}

$thesePants = new Pants();

echo $thesePants->pantsLabel('leeevi');

</code>

Chapter 3 FunCtions, Classes, and traits

47

From a file outside of the Pants class declaration, the code

would look like this:

<code>

<?php

$thesePants = new Pants\PantsMaker();

echo $thesePants->pantsLabel('leeevi');

</code>

You can also just include this PHP file within the same namespace and

there is no need for the beginning Pants\.

<code>

<?php

namespace Pants;

$thesePants = new PantsMaker();

echo $thesePants->pantsLabel('leeevi');

</code>

There is also the ability to alias a namespace for ease of use or better

code management.

<code>

namespace Pants as P;

$thesePants = new P\PantsMaker();

echo $thesePants->pantsLabel('leeevi');

</code>

There is a lot more to cover in terms of PHP objects and OOP in

general. This is but a small glance. We highly recommend seeking out

more information on OOP and what PHP has to offer.

Chapter 3 FunCtions, Classes, and traits

48

 Summary
Let’s review what you now know about OOP.

• OOP consists of three concepts:

• Encapsulation: Keeping functionality within the

specific class, separated from where it is not needed

• Polymorphism: Allowing for multiple versions to

be created from one parent class

• Inheritance: The sharing of specific properties and

methods from parent to child

• Classes are used to define objects.

• Objects use properties and methods defined in classes

to handle data.

• Classes can extend one another in a parent-child

relationship.

• Classes use visibility (public, private, or protected)

to allow extended classes to share properties and

methods.

• Classes can be abstract, allowing child classes to define

how methods or properties work at the time they are

created.

In the next chapter, you will learn how to work with data and data types

such as Bool, Int, Float, and Array.

Chapter 3 FunCtions, Classes, and traits

49

CHAPTER 4

Data and Data Types
In this chapter, you will learn how PHP deals with data and data types

and how variables are used to store data in PHP, from simple strings and

numbers to more complicated arrays and objects.

A data type is how you classify data into a certain category according to

its attributes, which can be

• Alphanumeric: Where characters are classified as strings

• Whole numbers: Which are classified integers

• Floating points: Which are numbers with

decimal points

• Boolean: Which can be true or false

This chapter will cover the following topics:

• Introduction of PHP data types

• Scalar types (predefined)

• Compound types (user-defined)

• Special types

 PHP Data Types
In general, PHP supports eight basic data types used to create variables,

and depending on what type of data you wish to store, you choose the

appropriate variable of that data type. If you wish to store the phrase “Hello

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_4

https://doi.org/10.1007/978-1-4842-8082-9_4

50

World” within a variable, you choose the type string over the type integer.

Why? A string is a sequence of characters while an integer is a non-decimal

number between -2,147,483,648 and 2,147,483,647. For practicality

purposes, using a string makes more sense, and if you try to assign “Hello

World” to an integer, PHP will kindly tell you that you cannot do such a thing.

Here are the eight basic data types used to create variables in PHP:

• Scalar types (predefined):

• Boolean

• Integer

• Float

• String

• Compound types (user-defined):

• Array

• Object

• Special types:

• NULL

• Resource

 PHP Data Types: Scalar Types
In PHP, scalar means

 1) A quantity, such as mass, length, or speed, that is

completely specified by its magnitude and has no

direction

 2) A number, numerical quantity, or element in a field

 3) A device that yields an output equal to the input

multiplied by a constant, as in a linear amplifier

Chapter 4 Data anD Data types

51

You can consider a number like 10 or 5 as a scalar. A word, letter, or

phrase such as “Hello World” is considered a scalar as well.

This PHP data type holds only a single value and includes four scalar

data types:

• Boolean

• Integer

• Float

• String

 Boolean
A bool or boolean type is the simplest type. Bool expresses a “truth” value

of either true or false.

To specify a bool literal, use the constants true or false. Both are case-

insensitive.

<?php

$foo = True; // set the value TRUE to $foo

?>

Booleans are often used in conditional testing, such as

<?php

if ($isTuesday) {

 echo "Taco Tuesday!!";

}

?>

Chapter 4 Data anD Data types

52

 Integer
An int is a non-decimal number between -2,147,483,648 and 2,147,483,647.

Integers can be specified in four different bases:

 1) Decimal (base 10) [1, 2, 3, 4, 5, 6, etc.]

 2) Hexadecimal (base 16) [1A, 1B, 1C, etc.]

 3) Ocatal (base 8) [1, 2, 3, 4, 5, 6, 7]

 4) Binary (base 2) [0, 1, 1011, etc.]

Integers must adhere to these rules as well:

• An integer must have at least one digit.

• An integer must not have a decimal point.

<?php

$a = 1234; // decimal number

$a = 0123; // octal number (equivalent to 83 decimal)

$a = 0o123; // octal number (as of PHP 8.1.0)

$a = 0x1A; // hexadecimal number (equivalent to 26 decimal)

$a = 0b11111111; // binary number (equivalent to 255 decimal)

$a = 1_234_567; // decimal number (as of PHP 7.4.0)

?>

 Float
A float (floating point number) is a number with a decimal point or a

number in exponential form.

<?php

$a = 1.234;

$b = 1.2e3;

Chapter 4 Data anD Data types

53

$c = 7E-10;

$d = 1_234.567; // as of PHP 7.4.0

?>

 String
A string is a sequence of characters, like “Hello World!”.

A string can be any text inside quotes. You can use single or

double quotes.

<?php

$foo = "Hello World!";

$bar = 'Hello World!';

?>

A string literal can be specified in four different ways:

• Single quotes

• Double quotes

• Heredoc syntax

• Nowdoc syntax

The most basic way to specify a variable as a string is to enclose it

in a single quote (‘). If you want to specify an ACTUAL single quote for

use, you need to “escape” the character itself or tell PHP to ignore the

functionality of this character and just use the single quote as a real single

quote you want to print out somewhere. The escape character for PHP is

the backslash (\). This begs the questions, how do you escape a backslash

in order to use a literal backslash. Simple. You escape it just the same, as

in (\\). Unlike the other syntaxes for strings (double-quoted and heredoc),

variables and escape sequences for special characters are not be expanded

when using single-quoted strings.

Chapter 4 Data anD Data types

54

<?php

echo 'this is a single quoted string';

echo 'You can also have embedded newlines if

This is the best way

To get the job done';

// Outputs: that robot once said: "I'll be back"

echo 'that robot once said: "I\'ll be back"';

// Outputs: You formatted C:*.*?

echo 'You formatted C:*.*?';

// Outputs: You formatted C:*.*?

echo 'You formatted C:*.*?';

// Outputs: This will not create: \n a newline

echo 'This will not create: \n a newline';

// Outputs: Variables also do not $expand

echo 'Variables also do not $expand';

?>

Chapter 4 Data anD Data types

55

When using double quotes ("), PHP interprets the following escape

sequences for special characters:

Sequence Meaning

\n Linefeed (LF or 0x0a (10) in asCII)

\r Carriage return (Cr or 0x0D (13) in asCII)

\t horizontal tab (ht or 0x09 (9) in asCII)

\v Vertical tab (Vt or 0x0B (11) in asCII)

\e escape (esC or 0x1B (27) in asCII)

\f Form feed (FF or 0x0C (12) in asCII)

\\ Backslash

\$ Dollar sign

\" Double quote

\[0-7]

{1,3}

the sequence of characters matching the regular expression is a

character in octal notation, which silently overflows to fit in a byte

(e.g., "\400" === "\000")

\x[0-

9A- Fa-f]

{1,2}

the sequence of characters matching the regular expression is a

character in hexadecimal notation

\u{[0-9A-

Fa-f]+}

the sequence of characters matching the regular expression is

a Unicode codepoint, which will be output to the string as that

codepoint's UtF-8 representation

The escape character for double-quoted strings is the same as single

quotes; it is the backslash (\). The main difference between single and

double-quoted strings is the fact that variables are expanded if they are

used within double quotes.

Chapter 4 Data anD Data types

56

A third method to create a string data type in PHP is with the heredoc

syntax: <<< . This method is especially useful for large amounts of

preformatted text. To use the heredoc, you simply start with this operator,

<<<, and afterwards it is followed by an identifier that marks the name

or reference of this string and then a newline. The string comes next and

then the same identifier from the beginning is used to close or end the

quotation. It looks something like this:

<?php

 echo <<<MYIDENTIFIER

Here is

The text that

I want to display

MYIDENTIFIER;

?>

Text within a heredoc behaves just like a double-quoted string does.

The escape codes above and quotes can still be used. Variables are

expanded as well.

Also, the closing identifier must follow the same naming rules as any

other label in PHP: it must contain only alphanumeric characters and

underscores, and it must start with a non-digit character or underscore.

<?php

echo <<<"FOOBAR"

Hello World!

FOOBAR;

?>

Nowdocs are the single-quoted version of heredocs. Nowdocs are

specified in the same manner but the identifier is enclosed within

single quotes.

Chapter 4 Data anD Data types

57

<?php

Echo <<<'FOOBAR'

Text that will not get parsed,

This will just show up

FOOBAR

?>

A string specified in double quotes or with heredoc has the variables

within it parsed. There are two types of syntax that can be used for this:

simple or complex. This does not describe the ease at which to use either

one; rather, it describes the complexity of the variables that are being

parsed. The simple syntax is most commonly used and provides a way

to embed a variable, an array value, or an object property in a string with

minimum effort. The complex syntax uses curly braces to organize and tell

PHP what needs to be parsed.

<?php

$tea = "earl grey";

echo "He drank some $tea tea.".PHP_EOL;

// Invalid. "s" is a valid character for a variable name, but

the variable is $tea.

echo "He drank some tea made of $teas.";

// Valid. Explicitly specify the end of the variable name by

enclosing it in braces:

echo "He drank some tea made of ${tea}.";

?>

This will output the following:

He drank some earl grey tea.

He drank some tea made of .

He drank some tea made of earl grey.

Chapter 4 Data anD Data types

58

As stated before, complex syntax is not called complex because

the syntax is complex, but because it allows for the use of complex

expressions. With the complex syntax, any array element, scalar variable,

or object property that has a string representation (variable with a string)

can be included in this syntax. This means not only can you display a

simple string via a variable named $foo = "bar" but you can display more

complex situations such as $foo[$x] = "Bar".

This is valid syntax although some variables need to be defined first.

Take a look at the following for the correct syntax:

<?php

$great = 'fun';

// outputs: This is { fun}

echo "This is { $great}";

// outputs: This is fun

echo "This is {$great}";

// Works

echo "This square is {$square->width}00 centimeters broad.";

// Works, quoted keys only work using the curly brace syntax

echo "This works: {$arr['key']}";

// Works

echo "This works: {$arr[4][3]}";

// This is wrong for the same reason as $foo[bar] is

wrong outside a string.

// In other words, it will still work, but only because PHP

first looks for a

// constant named foo; an error of level E_NOTICE (undefined

constant) will be

// thrown.

Chapter 4 Data anD Data types

59

echo "This is wrong: {$arr[foo][3]}";

// Works. When using multi-dimensional arrays, always use

braces around arrays

// when inside of strings

echo "This works: {$arr['foo'][3]}";

// Works.

echo "This works: " . $arr['foo'][3];

echo "This works too: {$obj->values[3]->name}";

echo "This is the value of the var named $name: {${$name}}";

echo "This is the value of the var named by the return value of

getName(): {${getName()}}";

echo "This is the value of the var named by the return value of

\$object->getName(): {${$object->getName()}}";

// Won't work, outputs: This is the return value of getName():

{getName()}

echo "This is the return value of getName(): {getName()}";

// Won't work, outputs: C:\folder\{fun}.txt

echo "C:\folder\{$great}.txt"

// Works, outputs: C:\folder\fun.txt

echo "C:\\folder\\{$great}.txt"

?>

Accessing class properties:

<?php

class foo {

 var $bar = 'I am bar.';

}

Chapter 4 Data anD Data types

60

$foo = new foo();

$bar = 'bar';

$baz = array('foo', 'bar', 'baz', 'quux');

echo "{$foo->$bar}\n";

echo "{$foo->{$baz[1]}}\n";

?>

 PHP String Functions
PHP has many built-in functions specifically designed for strings,

including

• substr()

• strlen()

• str_replace()

• trim()

• strpos()

• strtolower()

• strtoupper()

• is_string()

• strstr()

 substr()
string substr(string string, int start[, int length]);

The return value is a substring copied from within the string.

$comment = 'your product works well!';

Chapter 4 Data anD Data types

61

When calling the function, you can use either positive or negative

numbers. A positive number gets the string from the start position to the

end of the string. A negative start number gets the string from the end

of the string minus the start characters to the end of the string. Look at

chapter4-substring.php.

$comment = 'Your product is great!';

echo substr($comment, 1) . "\n";

// returns 'Your product is great!'.

$comment = 'Your product is great!';

echo substr($comment, -9) . "\n";

// returns 'is great!'

our product is great!

is great!

The length parameter is used to specify one of two things:

• Number of characters returned (positive length)

• The end character of the return sequence

(negative length)

$comment = 'Your product is great!';

substr($comment, 0, 4);

// returns 'Your'

substr($comment, 5, -10);

//returns 'product'

5 signifies the starting character point (p) and -10 determines the

ending point (count 10 places backwards starting from the end of the

string).

Chapter 4 Data anD Data types

62

 strlen()
strlen() is used for checking the length of a string.

echo strlen("Harder Faster Better Stronger");

// 29

<?php

$foo = "bar";

if (strlen ($foo) > 0) {

 echo 'that is valid foo';

} else {

 echo 'that foo is too small';

}

?>

// that foo is too small

 str_replace()
Many times, with strings, being able to find and replace a substring is

handy. With str_replace(), this is made easy for us.

mixed str_replace(mixed needle, mixed new_needle, mixed

haystack[, int &count]));

str_replace() uses a common concept in PHP which is “needle” and

“haystack”. When you see this, you can think of the idea of finding a needle

in a haystack. This lays out for you which term is which. I am looking for

a needle in haystack, as in str_replace("pants", $longParagraph). To

be clear:

"pants" == needle

$longParagraph == haystack

Chapter 4 Data anD Data types

63

<?php

$strings = array (

 'You like to have a snazzy time',

 'You are a really snazzy person',

 'Would you like to drink a cup of coffee?'

);

$search = array (

 'snazzy',

 'cup',

 'person',

 'coffee'

);

$replace = array (

 'great',

 'bottle'',

 'dude',

 'Dark brown stuff'

);

$replaced = str_replace ($search, $replace, $strings);

 trim()
Dealing with unknown input is tricky, and this is where trim() comes in

handy. The trim() function strips away unwanted spaces from the left,

right, or both sides of a string. You can also specify which characters you

would like to strip.

<?php

$trimit = 'junk awesome stuff junk';

$trimmed = trim ($trimit, 'junk');

Chapter 4 Data anD Data types

64

print_r ($trimmed);

// awesome stuff

?>

 strpos()
The function strpos() operates in a similar fashion to strstr(), except,

instead of returning a substring, it returns the numerical position of a

needle within a haystack.

int strpos(string haystack, string needle, int [offset]);

The integer returned is the position of the first occurrence of the

needle within the haystack. The first character is in position 0, just

like arrays.

You can see by running the following code that your exclamation point

is at position 13.

$awesome = "Super Awesome!";

echo strpos($awesome, "!");

// 13

This function accepts a single character as the needle, but it can accept

a string of any length. The optional offset parameter determines the point

within the haystack to start searching.

$awesome = "Super Awesome!";

echo strpos($awesome, 'm', 3);

// 11

This code echoes the value 11 to the browser because PHP started

looking for the character m at position 3.

Chapter 4 Data anD Data types

65

In any of these cases, if the needle is not in the string, strpos() will

return false. To avoid strange behavior, you can use the === operator to test

return values. See chapter4-strpos.php.

<?php

$awesome = "Super Awesome!";

$result = strpos ($awesome, 'G');

if ($result === false) {

 echo 'Not found';

} else {

 echo 'Found at position ' . $result;

}

// Not found

?>

 strtolower()
Very often in PHP you need to compare strings or correct capitalization

when people SHOUT or do odd things. In order to compare strings, you

want to make sure they are the same case. You can use strtolower() for

this purpose. Let’s use a function created with strtolower() to calm down

an angry person.

<?php

function calm_down($string) {

 return strtolower ($string);

}

$person = 'Angry people SHOUT!';

Chapter 4 Data anD Data types

66

echo calm_down ($person);

// angry people shout!

?>

 strtoupper()
strtoupper() is also quite popular for many of the reasons listed above

but in reverse, meaning it takes a lowercase or mixed case string and sets it

to all upper case. Let’s change things up and create a wake-up function to

get your workers going in the morning.

<?php

function wake_up($string) {

 return strtoupper ($string);

}

$person = 'these people need to get working!';

echo wake_up ($person);

// THESE PEOPLE NEED TO GET WORKING!

?>

 is_string()
is_string() is used to check if a value is a string. Let’s take a look at this

within an if() statement to take an action on strings in one way and non-

strings in another. is_string() returns true or false.

<?php

if (is_string (7)) {

 echo "Yes";

} else {

 echo "No";

Chapter 4 Data anD Data types

67

}

// No

if (is_string ("Lucky Number 7")) {

 echo "Yes";

} else {

 echo "No";

}

// Yes

?>

 strstr()
Last but not least is the strstr() function. The function strstr() can

be used to find a string or character match within a longer string. This

function can be used to find a string inside a string, including finding a

string containing only a single character.

string strstr(string haystack, string needle);

You pass strstr() a haystack to be searched and a needle to be found.

If an exact match of the needle is found, the strstr() function returns

the haystack from the needle onward. If it does not find the needle, it will

return false. If the needle occurs more than once, the returned string will

begin from the first occurrence of the needle.

As an example, let’s say you have a submission form for people to

submit their website, but you would like it in a certain format. You can use

strstr() to check for a string within a string to help you here.

<?php

$url = 'vegibit.com';

if (strstr ($url, 'https://www.') === false) {

 $url = 'http://www.' . $url;

Chapter 4 Data anD Data types

68

}

echo $url;

// https://www.vegibit.com

?>

Two compound types:

I

In the next section, you’ll walk through compound data types.

 PHP Data Types: Compound Types
PHP compound types can hold multiple values and include two data types:

• Array

• Object

 Array
An array in PHP is actually an ordered map. A map is a type that associates

values to keys. This type is optimized for several different uses; it can be

treated as an array, list (vector), hash table (an implementation of a map),

dictionary, collection, stack, queue, and probably more. Since array values

can be other arrays, trees and multidimensional arrays are also possible.

Explanations of these data structures are beyond the scope of this manual,

but we’ll provide at least one example for each of them. For more information,

look for the considerable literature that exists about this broad topic.

An array in PHP is a type that associates values to keys. By default,

PHP assigns the keys as numbers starting at 0 and going to the size of your

array. See chapter4.php.

<?php

$myArray[0] = "first";

Chapter 4 Data anD Data types

69

$myArray[1] = "Second";

$myArray[2] = "3rd";

var_dump($myArray);

?>

array(3) {

 [0]=>

 string(5) "first"

 [1]=>

 string(6) "second"

 [2]=>

 string(3) "3rd"

}

PHP also gives you the option to have specifically assigned keys that may

have more meaning to your application. They are called associative arrays.

<?php

$myArray['fruit'] = "apple";

$myArray['vegetable'] = "carrot";

$myArray['color'] = "blue";

var_dump($myArray);

?>

array(3) {

 ["fruit"]=>

 string(5) "apple"

 ["vegetable"]=>

 string(6) "carrot"

 ["color"]=>

 string(4) "blue"

}

Chapter 4 Data anD Data types

70

You can create arrays with multiple dimensions as well. You can think

of this like a television show comprised of the title “Strangest Things”

divided into seasons with individual episodes. As a variable in PHP, it

could look like this:

<?php

$strangestThings['season1']['episode1'] = "The Beginning";

//or

$strangestThings[0][0] = "The Beginning";

$strangestThings['season1']['episode3'] = "The Third Episode";

var_dump($strangestThings);

?>

array(2) {

 ["season1"]=>

 array(2) {

 ["episode1"]=>

 string(12) "The Beginning"

 ["episode3"]=>

 string(17) "The Third Episode"

 }

 [0]=>

 array(1) {

 [0]=>

 string(13) "The Beginning"

 }

}

Next, you’ll explore the “object” in object-oriented programming.

Chapter 4 Data anD Data types

71

 Object
Objects as well as classes make up the main components of object-

oriented programming (OOP). You can think of a class as the template or

structure that an object will use when the new object is created and used.

When an object datatype is created as a variable, let’s say $myCar, it will

have all of the properties and functionality of the $car class, including

$model, $color, $price, and so on.

When the individual objects are created, they inherit all the properties

and behaviors from the class, but each object will have different values for

the properties.

Let’s assume you have a class named Car. A Car can have properties

like model and color. You can define variables like $model and $color to

hold the values of these properties.

When the individual objects (Volvo, BMW, Toyota, etc.) are created,

they inherit all the properties and behaviors from the class, but each object

will have different values for the properties.

If you create a __construct() function, PHP will automatically call this

function when you create an object from a class.

 PHP Data Types: Special Types
In PHP, there are two special types:

• NULL

• Resource

 NULL
NULL is a special value that represents a variable with no value. NULL is

the only value that can possibly go in.

Chapter 4 Data anD Data types

72

The special NULL value represents a variable with no value. NULL

is the only possible value of a variable typed NULL to be considered

null when

• The constant null has been assigned.

• There has been no other value set.

• It has been unset().

(chapter4-1.php)

<?php

 $var = NULL;

 if(!isset($var)){

 echo 'Null value' ;

 }

?>

Null value

 resource
Resources are not exactly a data type in PHP because they are mainly used

to store some function calls or as references to external PHP resources.

 Summary
In this chapter, you learned that in PHP there are different data types

like scalar types (predefined), compound types (user-defined), and

special types.

Chapter 4 Data anD Data types

73

You also learned that PHP data types can be alphanumeric, whole

numbers, floating points, and Boolean. You focused especially on

strings, which are a very useful type in PHP and you will use them

often. Remember that the power of strings comes in the many different

manipulations that can be performed and the many different prebuilt

string functions that are available.

In the next chapter, you will learn about PHP form data handling

and you will see how to create and use forms to get form data using PHP

superglobals such as $_GET and $_POST.

Chapter 4 Data anD Data types

75

CHAPTER 5

Form Data
In this chapter, you will learn how to create and manage forms in PHP

using the POST and GET methods.

You will explore three superglobals: $_POST, $_GET, and $_REQUEST.

$_POST and $_GET are the two most common ways of receiving user input

in PHP. $_REQUEST is lesser used.

This chapter consists of the following sections:

• PHP GET Form

• PHP POST Form

We once asked a junior developer to explain the difference between

POST and GET (in general). The answer he gave, while less than ideal, was

not incorrect. He said that POST is used to send data and GET is used to

retrieve data. This is not wrong. When using a restful API, one would POST

data to be used by the server and GET data as a request for a database

query (for example). This, however, is not the answer we were expecting–

or that he even knew he was talking about. The differences we were

looking for between POST and GET are the following:

POST sends data via the HTTP body to an awaiting server (API, specific

PHP file, etc..).

GET appends form data to the URL in a name-value pair.

The next time you hit the Submit button on a form, look at the URL. If

you see any of the information you just filled out, then it is using GET. If the

URL is clean, then surely POST is being used.

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_5

https://doi.org/10.1007/978-1-4842-8082-9_5

76

You don’t even need to use a form to be using GET, to be honest.

GET is a very useful way of persisting unique IDs, breadcrumbs, and

miscellaneous data. They both have their function and use cases, but with

both we need to keep security at the top. There was a TV show about a

doctor who was famous for saying “Never trust a patient. They lie.” In our

case, NEVER trust user input. Exposing your code to an open attack vector

like a form is just that… an attack vector. It is not a matter of “if” someone

attempts to hack through the form but indeed 100% “when.” If you look at

your live server logs right now, you will see hundreds of requests coming

in, scanning all files and directories that they can find. While they are

attempting to find your exposed WordPress config file, they are also hitting

the front end with bots to attempt SQL injections on your forms. Once you

create a form, you have opened the door to the outside world and hackers

will gladly walk in.

Now that I have scared you off completely from ever attempting to

code again, this is manageable. There are tactics that can be employed that

will slow down, deter, and even stop hackers from gaining access through

code you have written. Having said all of that, THERE IS NO SUREFIRE

WAY TO PROTECT AGAINST SQL INJECTIONS. There are many best

practices that you can follow to feel as secure as possible, though, and you

will learn about them after you get your own hacker red carpet, I mean

form, set up.

 PHP POST Form
Let’s see how the PHP POST form works. Let’s create a simple HTML form

and see how $_POST receives data from the post request variable in the

HTML page.

Here is a basic HTML form:

(basicForm.php)

Chapter 5 Form Data

77

<html>

<body>

<form action="functions.php" method="post">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>

</body>

</html>

This form takes the user input of name and email and sends them via

POST to functions.php. The “method” is set by the method setting and

where you are sending these values is set at the action setting. If you open

up functions.php, you can see what happens next.

<?php

echo "Thank you {$_POST['name']}. I will email you at {$_

POST['email']}";

?>

back

This code takes (and assumes the validity of) the two POST variables

sent from your form and prints them to the screen. You see name="name"

and name="email" get sent over to functions.php and be retrieved with

$_POST['name'] or $_POST['email']. If you change the name of email

in the form page from name="email" to name="myEmail", then you would

have to refer to it as $_POST['myEmail']. Let’s try something real quick.

Instead of putting your name in the “name” field, try typing

<h1>pants</h1>

Now Press Enter and look at the results shown in Figure 5-1.

Chapter 5 Form Data

78

Figure 5-1. Code result for the POST Form

This is not the result the developer (you) were thinking about when

creating this form. As a developer, you must always be thinking of not only

the exact use case for your code; the fringe, edge cases, and worst cases

must be considered. Users are very dependable and will consistently use

applications the “right” way but there are cases in which the previous

example can happen. Hopefully this happens because of a one-off mistype,

but the reality is that more and more often attackers use forms like the one

you built to utilize the lack of security measures to gain entrance into your

system. Security must be at the forefront of a developer’s mind, no matter

where you work or how secure you think you may be.

Let’s start to mitigate this situation.

Open up functions.php and add these lines to make the code look

like this:

<?php

$name = filter_var($_POST['name'], FILTER_SANITIZE_FULL_

SPECIAL_CHARS);

$email = filter_var($_POST['email'], FILTER_SANITIZE_EMAIL);

echo "Thank you {$name}. I will email you at {$email}";

?>

back

Chapter 5 Form Data

79

Go back and try to send <h1>pants</h1> as “name” again. You will

see a different result this time. You are now blocking the HTML elements

from being rendered by the browser. This is a positive step in the right

direction. Many exploits that are live today begin with simple HTML

elements rendering on a page. Now, let’s see what you can do with the

email address.

You are already sanitizing the email address to make sure that no

sneaky characters get through, but you also want to validate that the

address fits a certain format. You want to check if the email address they

entered has a beginning part with letters and numbers and a few special

characters like -. Then you want to check if there is an @ sign followed by

more letters and numbers and then a period with a valid domain (.com,

.org, .net, etc.). This can be done with the same filter_var function you

used earlier but with the FILTER_VALIDATE_EMAIL option used. Open up

functions.php again and add these lines of code to make it validate the

email address:

<?php

$emailErr= null;

$name = filter_var($_POST['name'], FILTER_SANITIZE_FULL_

SPECIAL_CHARS);

$email = filter_var($_POST['email'], FILTER_SANITIZE_EMAIL);

if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailErr = "Invalid email format";

}

if (!$emailErr) {

 echo "Thank you {$name}. I will email you at {$email}";

 } else {

 echo $emailErr;

}

?>

Chapter 5 Form Data

80

back

Reload the form and enter in a very non-email-addressy email like

pants one1@mail.$$$.

This will return “Invalid email format” because it is an invalid email

format (see how that works;) This method, of course, is not fool-proof.

Without actually sending and receiving back a response from the email

server from the domain that they have entered, you can’t actually validate

that this is a real and used email address. This is just to get you past the

first check. Next would come a “Please check your email to validate you are

a real user” step in order to make this more realistic.

Did you notice that after you received the “Invalid email format”

message and clicked on the back button, your input was gone from the

boxes? Your name and email were no longer there. Wouldn’t it be nice if

you included those things back in the box just in case someone mistyped a

letter and didn’t want to type everything again?

 PHP GET Form
Let’s see how the PHP GET form works.

You can do the above functionality easily with $_GET. Open up

functions.php again and add these lines to the “back” link at the bottom:

<?php

$emailErr= null;

$name = filter_var($_POST['name'], FILTER_SANITIZE_FULL_

SPECIAL_CHARS);

$email = filter_var($_POST['email'], FILTER_SANITIZE_EMAIL);

if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailErr = "Invalid email format";

}

Chapter 5 Form Data

81

 if (!$emailErr) {

 echo "Thank you {$name}. I will email you at {$email}";

 } else {

 echo $emailErr;

 }

 ?>

<a href="basicForm.php?name=<?= $name ?>&email=<?=

$email?>">back

Here you are adding the $name and $email variables to the URL so that

you can use them when you get back to shortForm.php. What is with <?=,

though? This is how you can use PHO with its short open option. Instead

of typing <?php when you want to use PHP code within HTML to do

something simple, you can use the short open <?= and the = means echo.

So, with this in your toolbox, you can quickly put the $name and $email

variables where you need to in the URL to use the $_GET variable back on

the basicForm.php page. Go ahead and open that file up, too, and add

these lines:

<?php

if (isset($_GET)) {

 if (isset($_GET['name'])) {

 $name = $_GET['name'];

 }

 if (isset($_GET['email']) {

 $email = $_GET['email'];

 }

}

$name != '' ? $name : '';

$email != '' ? $email : '';

?>

Chapter 5 Form Data

82

<html>

<body>

<form action="functions.php" method="post">

Name: <input type="text" name="name" value="<?= $name; ?>">

E-mail: <input type="text" name="email" value="<?= $email;

?>">

<input type="submit">

</form>

</body>

</html>

The form page will now check to see if there are any variables set

within the $_GET super global. If there are, it checks if $_GET['name'] and

$_GET['email'] are set. If there is anything in there, it sets them to $name

and $email, respectively. Next, it checks if $name or $email have been set

or not. This is a ternary if statement. Instead of typing

if ($name != "") {

 $name = $name;

} else {

 $name = "";

}

you can just say

(Conditional statement) ? (Statement_1) : (Statement_2);

So, what you want is

$name != "" ? $name : ""

If $name is not empty, then set it to $name otherwise set

it to "".

Chapter 5 Form Data

83

In the input box you use the value setting to add the name or email you

just received (or not) from $_GET via the URL. Now that you can get user

information and pass it back to your own scripts, you can fully interact

with users. Using the $_GET and $_POST superglobals gets you familiar with

arrays, specifically associative arrays.

 Summary
In this chapter, you learned about PHP form data handling. You learned

how to create and use forms to get form data using PHP superglobals such

as $_GET and $_POST.

In the next chapter, you will learn more and take a deeper look into

arrays, which are used to hold in a single variable multiple values of a

similar type.

Chapter 5 Form Data

85

CHAPTER 6

Arrays
In the previous chapters, you learned how to deal with PHP variables. In

this chapter, we will teach you how to create and manage PHP arrays.

Say you need to hold multiple values of a similar type in a single

variable, without creating additional variables to store those values. How

would you do this? By using PHP arrays.

This chapter consists of the following sections:

• PHP Indexed and Associative Arrays

• PHP Multidimensional Arrays

• PHP Array Functions

 PHP Indexed and Associative Arrays
Arrays are one of the most versatile and useful elements in PHP. Just

what is an array? Arrays are used to store multiple values within a single

variable. Think of an array as a container with multiple sections. With

this container, you can store and organize other information, including

variables.

With PHP associative arrays, you can associate a name with each array

element in PHP just by using the => symbol.

This can look like

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_6

https://doi.org/10.1007/978-1-4842-8082-9_6

86

array(

 key => value,

 key2 => value2,

 key3 => value3,

 ...

)

With a PHP indexed array, a PHP index is represented by a number,

starting from 0, like this:

$city=array("Rome","Naples","Milan");

$city[0] = "Rome";

$city[1] = "Naples";

$city[3] = "Milan";

Actual PHP code with an associative array looks like the following:

Chapter6/firstArray.php

<?php

$array1 = array(

 "foo" => "bar",

 "bar" => "foo",

);

// Using the short array syntax

$array2 = [

 "foo2" => "bar2",

 "bar2" => "foo2",

];

var_dump($array1);

echo '
';

var_dump($array2);

Chapter 6 arrays

87

The output looks like this:

array(2) { ["foo"]=> string(3) "bar" ["bar"]=>

string(3) "foo" }

array(2) { ["foo2"]=> string(4) "bar2" ["bar2"]=> string(4)

"foo2" }

The first part, array(2), tells you that the variable you are using,

var_dump, is of type array. The 2 indicates how many elements are held

within this array. The next part is the key=>value pair listing. The key is

in the square brackets and the value is to the right of the => sign. Looking

to the direct right of => you see string(3), which tells you that the value

in the key=>value pair is a string with a length of 3 ("bar"). Let’s look at

firstArray2.php to see some examples using different types of variables.

<?php

$array = array(

 "foo" => "bar",

 "bar" => "foo",

 100 => -100,

 -100 => 100,

);

var_dump($array);

?>

Here the output is

array(4) { ["foo"]=> string(3) "bar" ["bar"]=> string(3) "foo"

[100]=> int(-100) [-100]=> int(100) }

Notice you have data of types string and int within this array. So far you

have used the key=>value relationship to define your arrays, but what if

you don’t “need” a key? For example, what if you are just using the array to

store the first names of preferred customers. You would not want to use

Chapter 6 arrays

88

"Customer" => "john",

"Customer" => "peter",

etc...

This would not work. First, you can’t successfully use the same key for

multiple values. And second, it is just useless. PHP automatically assigns a

numeric key when one is not defined by the user.

firstArray3.php

<?php

$array = array("foo", "bar", "hello", "world");

var_dump($array);

The output is

array(4) { [0]=> string(3) "foo" [1]=> string(3) "bar" [2]=>

string(5) "hello" [3]=> string(5) "world" }

You can see that instead of a key that you defined, PHP uses numbers in its

place. Notice that the array starts at 0 instead of 1. With all the many programming

languages and their differences, they all agree on one thing: arrays start at 0.

If you have been following along so far, you may be wondering if you

can have an array WITHIN an array. The answer is yes. They are called

multidimensional arrays. Take a look at firstArray4.php.

<?php

$array = array(

 "foo" => "bar",

 42 => 24,

 "multi" => array(

 "dimensional" => array(

 "array" => "foobar"

)

)

);

Chapter 6 arrays

89

var_dump($array["foo"]);

var_dump($array[42]);

var_dump($array["multi"]["dimensional"]["array"]);

The output is

string(3) "bar" int(42) string(6) "foobar"

The first two examples,

var_dump($array["foo"]);

var_dump($array[42]);

are pretty straightforward but the last one,

var_dump($array["multi"]["dimensional"]["array"]);

is more complicated and needs a bit of explaining. This is the

multidimensional array. Think of it like a song on an album. You might

refer to this specific song while talking to your friend as $artist['album']

['trackNumber']. Or if the artist has a large catalog of music, then it could

be $music['artist']['album']['trackNumber'] and $music['elvis']

['live'][1] would be the first song on Elvis’ album named “Live.” Things

can get pretty hairy with multidimensional arrays but sometimes they are

the only way to store and organize the data you are using.

Here are some more use cases for multidimensional arrays:

multiArray1.php

<?php

$cars = array (

 array("Subaru",21,17),

 array("Toyota",13,12),

 array("Lexus",6,8),

 array("Ford",14,10)

);

Chapter 6 arrays

90

Here you see that you can create a two-dimensional array using

data from a used car lot. You are keeping track of the car brand, units

available, and units sold. Your main array contains four separate arrays

with the specific data. Cars is an array with the first element being an array

containing Subaru, 21, and 17. To access Subaru, you use

$cars[0][0];

This means, within the $cars array, you want the first ([0]) element

of the first ([0]) element. If you want to access 21, you use $cars[0][1],

meaning you want the second element ([1]) of the first ([0]) element.

echo $cars[0][0] . ": In available: " . $cars[0][1] . ", sold:

" . $cars[0][2] . " .
";

echo $cars[1][0] . ": In available: " . $cars[1][1] . ", sold:

" . $cars[1][2] . " .
";

echo $cars[2][0] . ": In available: " . $cars[2][1] . ", sold:

" . $cars[2][2] . " .
";

echo $cars[3][0] . ": In available: " . $cars[3][1] . ", sold:

" . $cars[3][2] . " .
";

Whenever you need to work through data that is stored in an array, for

loops are a great solution. Here you iterate through the array and print out

the needed information:

for ($row = 0; $row < 4; $row++) {

 echo "<p>Row #$row -- {$cars[$row][0]}</p>";

 echo "";

 for ($col = 1; $col < 3; $col++) {

 echo "".$cars[$row][$col]."";

 }

 echo "";

}

Chapter 6 arrays

91

 PHP Multidimensional Arrays
A PHP multidimensional array is also known as an array of arrays, and it

is generally used when you need to store, for instance, tabular data in an

array and provide it in a matrix of row * column.

A multidimensional array looks like this:

Definition

$emp = array

 (

 array(1,"Luna",10000),

 array(2,"Leo",20000),

 array(3,"Neve",30000)

);

 PHP Array Functions
You’ve now learned about indexed, associative, and multidimensional

arrays, so let’s move onto PHP array functions, which are used in the PHP

language to access and manipulate the elements of an array.

The PHP array’s built-in functions are generally used when you need to

create a simple and multi-dimensional array.

Here is the full list of the PHP array functions; they will explained in

this chapter.

Chapter 6 arrays

92

array_chunk()

array_combine()

array_count_values()

array_diff_assoc()

array_diff_keys()

array_diff_uassoc()

array_diff_ukey()

array_diff()

array_fill_keys()

array_fill()

array_filter()

array_flip()

array_intersect_

assoc()

array_intersect_

key()

array_intersect_

uassoc()

array_intersect()

array_key_exists()

array_keys()

array_merge_

recursive()

array_multisort()

array_pad()

array_pop()

array_product()

array_push()

array_rand()

array_reduce()

array_replace_recursive()

array_replace()

array_reverse()

array_search()

array_shift()

array_slice()

array_splice()

array_sum()

array_udiff_assoc()

array_udiff()

array_uintersect_assoc()

array_uintersect_uassoc()

array_uintersect()

array_unique()

array_unshift()

array_values()

array_walk_recursive()

array_walk()

array()

arsort()

asort()

compact()

count()

current()

end()

extract()

in_array()

key()

krsort()

ksort()

list()

natcasesort()

natsort()

next()

pos()

prev()

range()

reset()

rsort()

shuffle()

sizeof()

sort()

uasort()

uksort()

usort()

each()

Let’s now introduce some of the most used and common PHP Array

functions.

Chapter 6 arrays

93

 array_change_key_case
Changes the case of all keys in an array

array_change_key_case(array $array, int $case = CASE_

LOWER): array

Returns an array with all keys from the array lowercased or

uppercased. Numbered indices are left as is.

Parameters
array

The array to work on

case

Either CASE_UPPER or CASE_LOWER (default)

Return values
Returns an array with its keys lowercased or uppercased, or null if the

array is not an array

 array_chunk
Splits an array into chunks

array_chunk(array $array, int $length, bool $preserve_keys =

false): array

Chunks an array into arrays with length elements. The last chunk may

contain less than the length elements.

Parameters
array

The array to work on

length

The size of each chunk

preserve_keys

Chapter 6 arrays

94

When set to true, keys will be preserved. The default is false, which will

reindex the chunk numerically.

Return values
Returns a multidimensional numerically indexed array, starting with 0,

with each dimension containing length elements

 array_column
Returns the values from a single column in the input array

array_column(array $array, int|string|null $column_key,

int|string|null $index_key = null): array

array_column() returns the values from a single column of the array,

identified by the column_key. Optionally, an index_key may be provided

to index the values in the returned array by the values from the index_key

column of the input array.

Parameters
array

A multi-dimensional array or an array of objects from which to pull a

column of values. If an array of objects is provided, then public properties can

be directly pulled. In order for protected or private properties to be pulled,

the class must implement both the __get() and __isset() magic methods.

column_key

The column of values to return. This value may be an integer key of the

column you wish to retrieve, or it may be a string key name for an associative

array or property name. It may also be null to return complete arrays or

objects (this is useful together with index_key to reindex the array).

index_key

The column to use as the index/key for the returned array. This value

may be the integer key of the column or it may be the string key name. The

value is cast as usual for array keys (however, prior to PHP 8.0.0, objects

supporting conversion to string were also allowed).

Chapter 6 arrays

95

Return values
Returns an array of values representing a single column from the

input array

 array_combine
Creates an array by using the values from the keys array as keys and the

values from the values array as the corresponding values

array_combine(array $keys, array $values): array

Parameters
keys

Array of keys to be used. Illegal values for a key will be converted to

a string.

values

Array of values to be used

Return values
Returns the combined array or false if the number of elements for each

array isn’t equal

 array_count_values
array_count_values() returns an array using the values of array as keys

and their frequency in array as values.

array_count_values(array $array): array

Parameters
array

The array of values to count

Return values
Returns an associative array of values from an array as keys and their

count as value

Chapter 6 arrays

96

 array_diff_assoc
Computes the difference of the arrays with an additional index check

array_diff_assoc(array $array, array ...$arrays): array

Unlike array_diff(), the array keys are also used in the comparison.

Parameters
array

The array to compare from

arrays

Arrays to compare against

Return values
Returns an array containing all the values from the array that are not

present in any of the other arrays

 array_diff_key
Computes the difference of arrays using keys for comparison

array_diff_key(array $array, array ...$arrays): array

This function is like array_diff() except the comparison is done on

the keys instead of the values.

Parameters
array

The array to compare from

arrays

Arrays to compare against

Return values
Returns an array containing all the entries from the array whose keys

are absent from all of the other arrays

Chapter 6 arrays

97

 array_diff_uassoc
Computes the difference of the arrays with an additional index check,

which is performed by a user-supplied callback function. Unlike array_

diff(), the array keys are used in the comparison.

array_diff_uassoc(array $array, array ...$arrays, callable

$key_compare_func): array

Unlike array_diff_assoc(), a user-supplied callback function is used

for the indices comparison, not an internal function.

Parameters
array

The array to compare from

arrays

Arrays to compare against

key_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Returns an array containing all the entries from the array that are not

present in any of the other arrays

 array_diff_ukey
Compares the keys from the array against the keys from arrays and returns

the difference. This function is like array_diff(), except the comparison

is done on the keys instead of the values.

Chapter 6 arrays

98

array_diff_ukey(array $array, array ...$arrays, callable $key_

compare_func): array

Unlike array_diff_key(), a user-supplied callback function is used

for the indices comparison, not an internal function.

Parameters
array

The array to compare from

arrays

Arrays to compare against

key_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Returns an array containing all the entries from the array that are not

present in any of the other arrays

 array_diff
Computes the difference of arrays

array_diff(array $array, array ...$arrays): array

Compares an array against one or more other arrays and returns the

values in the array that are not present in any of the other arrays

Parameters
array

The array to compare from

arrays

Arrays to compare against

Chapter 6 arrays

99

Return values
Returns an array containing all the entries from the array that are not

present in any of the other arrays. Keys in the array are preserved.

 array_fill_keys
Fills an array with the value of the value parameter, using the values of the

keys array as keys

array_fill_keys(array $keys, mixed $value): array

Parameters
keys

Array of values that will be used as keys. Illegal values for a key will be

converted to a string.

value

Value to use for filling

Return values
Returns the filled array

 array_fill
Fills an array with values

array_fill(int $start_index, int $count, mixed $value): array

Fills an array with count entries of the value of the value parameter,

with keys starting at the start_index parameter

Parameters
start_index

The first index of the returned array. If start_index is negative, the

first index of the returned array will be start_index and the following

indices will start from 0 (see example).

Chapter 6 arrays

100

count

Number of elements to insert. Must be greater than or equal to zero.

value

Value to use for filling

Return values
Returns the filled array

 array_filter
Filters elements of an array using a callback function

array_filter(array $array, ?callable $callback = null, int

$mode = 0): array

Iterates over each value in the array, passing them to the callback

function. If the callback function returns true, the current value from the

array is returned into the result array.

Array keys are preserved and may result in gaps if the array was

indexed. The result array can be reindexed using the array_values()

function.

Parameters
array

The array to iterate over

callback

The callback function to use. If no callback is supplied, all empty

entries of array will be removed. See empty() for how PHP defines empty

in this case.

mode

Flag determining what arguments are sent to callback:

ARRAY_FILTER_USE_KEY

Passes the key as the only argument to callback instead of the value

ARRAY_FILTER_USE_BOTH

Chapter 6 arrays

101

Passes both value and key as arguments to callback instead of the

value. Default is 0, which will pass value as the only argument to callback

instead.

Return values
Returns the filtered array

 array_flip
Exchanges all keys with their associated values in an array

array_flip(array $array): array

array_flip() returns an array in flip order; in other words, keys from

the array become values and values from the array become keys.

Note that the values of array need to be valid keys, so they need to be

either an int or a string. You will get a warning if a value has the wrong

type, and the key/value pair in question will not be included in the result.

If a value has several occurrences, the latest key will be used as its

value, and all others will be lost.

Parameters
array

An array of key/value pairs to be flipped

Return values
Returns the flipped array

 array_intersect_assoc
Computes the intersection of arrays with an additional index check

array_intersect_assoc(array $array, array ...$arrays): array

Chapter 6 arrays

102

array_intersect_assoc() returns an array containing all the values

of an array that are present in all the arguments. Note that the keys are also

used in the comparison, unlike in array_intersect().

Parameters
array

The array with master values to check

arrays

Arrays to compare values against

Return values
Returns an associative array containing all the values in the array that

are present in all of the arguments

 array_intersect_key
Computes the intersection of arrays using keys for comparison

array_intersect_key(array $array, array ...$arrays): array

array_intersect_key() returns an array containing all the entries of

an array that have keys that are present in all the arguments.

Parameters
array

The array with master keys to check

arrays

Arrays to compare keys against

Return values
Returns an associative array containing all the entries of the array that

have keys that are present in all arguments

 array_intersect_uassoc
Computes the intersection of arrays with an additional index check and

compares indexes by a callback function

Chapter 6 arrays

103

array_intersect_uassoc(array $array, array ...$arrays, callable

$key_compare_func): array

array_intersect_uassoc() returns an array containing all the values

of array that are present in all the arguments. Note that the keys are used in

the comparison, unlike in array_intersect().

Parameters
array

Initial array for the comparison of the arrays

arrays

Arrays to compare keys against

key_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Returns the values of array whose values exist in all of the arguments

 array_intersect_ukey
Computes the intersection of arrays using a callback function on the keys

for comparison

array_intersect_ukey(array $array, array ...$arrays, callable

$key_compare_func): array

array_intersect_ukey() returns an array containing all the values of

an array that have matching keys that are present in all the arguments.

Parameters
array

Initial array for comparison of the arrays

Chapter 6 arrays

104

arrays

Arrays to compare keys against

key_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Returns the values of array whose keys exist in all the arguments

 array_intersect
Computes the intersection of arrays

array_intersect(array $array, array ...$arrays): array

array_intersect() returns an array containing all the values of an

array that are present in all the arguments. Note that keys are preserved.

Parameters
array

The array with master values to check

arrays

Arrays to compare values against

Return values
Returns an array containing all of the values in the array whose values

exist in all of the parameters

 array_is_list
Checks whether a given array is a list

array_is_list(array $array): bool

Chapter 6 arrays

105

An array is considered a list if its keys consist of consecutive numbers

from 0 to count($array)-1.

Parameters
array

The array being evaluated

Return values
Returns true if array is a list or false otherwise

 array_key_exists
Checks if the given key or index exists in the array

array_key_exists(string|int $key, array $array): bool

array_key_exists() returns true if the given key is set in the array. A

key can be any value possible for an array index.

Parameters
key

Value to check

array

An array with keys to check

Return values
Returns true on success or false on failure

 array_key_first
Gets the first key of an array without affecting the internal array pointer

array_key_first(array $array): int|string|null

Parameters
array

An array

Return values
Returns the first key of array if the array is not empty or null otherwise

Chapter 6 arrays

106

 array_key_last
Gets the last key of an array without affecting the internal array pointer

array_key_last(array $array): int|string|null

Parameters
array

An array

Return values
Returns the last key of array if the array is not empty or null otherwise

 array_keys
Returns all the keys or a subset of the keys of an array

array_keys(array $array): array

array_keys(array $array, mixed $search_value, bool $strict =

false): array

array_keys() returns the keys, numeric and string, from the array. If

a search_value is specified, then only the keys for that value are returned.

Otherwise, all the keys from the array are returned.

Parameters
array

An array containing keys to return

search_value

If specified, then only keys containing this value are returned.

strict

Determines if the strict comparison (===) should be used during

the search.

Return values
Returns an array of all the keys in array

Chapter 6 arrays

107

 array_map
Applies the callback to the elements of the given arrays

array_map(?callable $callback, array $array, array

...$arrays): array

array_map() returns an array containing the results of applying

the callback to the corresponding value of the array (and arrays if more

arrays are provided) used as arguments for the callback. The number of

parameters that the callback function accepts should match the number

of arrays passed to array_map(). Excess input arrays are ignored. An

ArgumentCountError is thrown if an insufficient number of arguments is

provided.

Parameters
callback

A callable to run for each element in each array. Null can be passed as

a value to callback to perform a zip operation on multiple arrays. If only

an array is provided, array_map() will return the input array.

array

An array to run through the callback function

arrays

Supplementary variable list of array arguments to run through the

callback function

Return values
Returns an array containing the results of applying the callback

function to the corresponding value of the array (and arrays if more arrays

are provided) used as arguments for the callback

The returned array will preserve the keys of the array argument if and

only if exactly one array is passed. If more than one array is passed, the

returned array will have sequential integer keys.

Chapter 6 arrays

108

 array_merge_recursive
Merges one or more arrays recursively

array_merge_recursive(array ...$arrays): array

array_merge_recursive() merges the elements of one or more arrays

together so that the values of one are appended to the end of the previous

one. It returns the resulting array.

If the input arrays have the same string keys, then the values for these

keys are merged together into an array, and this is done recursively, so

that if one of the values is an array itself, the function will merge it with a

corresponding entry in another array too. If, however, the arrays have the

same numeric key, the later value will not overwrite the original value, but

will be appended.

Parameters
arrays

Variable list of arrays to recursively merge

Return values
An array of values resulted from merging the arguments together. If

called without any arguments, it returns an empty array.

 array_merge
Merges one or more arrays

array_merge(array ...$arrays): array

Merges the elements of one or more arrays together so that the

values of one are appended to the end of the previous one. It returns the

resulting array.

If the input arrays have the same string keys, the later value for that

key will overwrite the previous one. If the arrays contain numeric keys, the

later value will not overwrite the original value but will be appended.

Chapter 6 arrays

109

Values in the input arrays with numeric keys will be renumbered with

incrementing keys starting from zero in the result array.

Parameters
arrays

Variable list of arrays to merge

Return values
Returns the resulting array. If called without any arguments, returns an

empty array.

 array_multisort
Sorts multiple or multi-dimensional arrays

array1_sort_flags

Sorts options for the previous array argument

Sorting type flags:
SORT_REGULAR compares items normally (doesn’t change types).

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

SORT_LOCALE_STRING compares items as strings, based on the current

locale. It uses the locale, which can be changed using setlocale().

SORT_NATURAL compares items as strings using “natural ordering” like

natsort().

SORT_FLAG_CASE can be combined (bitwise OR) with SORT_STRING or

SORT_NATURAL to sort strings case-insensitively.

This argument can be swapped with array1_sort_order or omitted

entirely, in which case SORT_REGULAR is assumed.

rest

More arrays, optionally followed by sort order and flags. Only elements

corresponding to equivalent elements in previous arrays are compared. In

other words, the sort is lexicographical.

Return values
Returns true on success or false on failure

Chapter 6 arrays

110

 array_pad
Pada an array to the specified length with a value

array_pad(array $array, int $length, mixed $value): array

array_pad() returns a copy of the array padded to a size specified by

length with the value value. If length is positive, then the array is padded

on the right; if it’s negative, then on the left. If the absolute value of the

length is less than or equal to the length of the array, then no padding

takes place. It is possible to add at most 1,048,576 elements at a time.

Parameters
array

Initial array of values to pad

length

New size of the array

value

Value to pad if array is less than length

Return values
Returns a copy of the array padded to size specified by length with the

value value. If the length is positive, then the array is padded on the right;

if it’s negative, then it’s on the left. If the absolute value of length is less

than or equal to the length of the array, then no padding takes place.

 array_pop
Pops the element off the end of array

array_pop(array &$array): mixed

array_pop()

Note this function will reset() the array pointer of the input array
after use.

Chapter 6 arrays

111

Parameters
array

The array to get the value from

Return values
Returns the value of the last element of array. If the array is empty (or is

not an array), null will be returned.

 array_product
Calculates the product of values in an array

array_product(array $array): int|float

Parameters
array

The array

Return values
Returns the product as an integer or float

 array_push
Pushes one or more elements onto the end of array

array_push(array &$array, mixed ...$values): int

array_push() treats an array as a stack and pushes the passed-in

variables onto the end of array. The length of the array increases by the

number of variables pushed. This has the same effect as

<?php

$array[] = $var;

?>

repeated for each passed value.

Chapter 6 arrays

112

If you use array_push() to add one element to the array, it’s better

to use $array[] = because in that way there is no overhead of calling a

function.

Parameters
array

The input array

values

The values to push onto the end of the array

Return values
Returns the new number of elements in the array

 array_rand
Picks one or more random keys out of an array returns the key (or keys) of

the random entries.

array_rand(array $array, int $num = 1): int|string|array

It uses a pseudo random number generator that is not suitable for

cryptographic purposes.

Parameters
array

The input array

num

Specifies how many entries should be picked

Return values
When picking only one entry, array_rand() returns the key for a

random entry. Otherwise, an array of keys for the random entries is

returned. This is done so that random keys can be picked from the array as

well as random values. If multiple keys are returned, they will be returned

in the order they were present in the original array. Trying to pick more

elements than there are in the array will result in an E_WARNING level error

and NULL will be returned.

Chapter 6 arrays

113

 array_reduce
Iteratively reduces the array to a single value using a callback function

array_reduce(array $array, callable $callback, mixed

$initial = null): mixed

Parameters
array

The input array

callback

callback(mixed $carry, mixed $item): mixed

carry

Holds the return value of the previous iteration; in the case of the first

iteration, it instead holds the value of initial.

item

Holds the value of the current iteration

initial

If the optional initial is available, it will be used at the beginning of

the process, or as a final result in case the array is empty.

Return values
Returns the resulting value. If the array is empty and initial is not

passed, array_reduce() returns null.

 array_replace_recursive
Replaces elements from passed arrays into the first array recursively

array_replace_recursive(array $array, array

...$replacements): array

array_replace_recursive() replaces the values of array with the

same values from all the following arrays. If a key from the first array exists

in the second array, its value will be replaced by the value from the second

array. If the key exists in the second array, and not the first, it will be

Chapter 6 arrays

114

created in the first array. If a key only exists in the first array, it will be left

as is. If several arrays are passed for replacement, they will be processed in

order, the later array overwriting the previous values.

array_replace_recursive() is recursive: it will recurse into arrays

and apply the same process to the inner value.

When the value in the first array is scalar, it will be replaced by the

value in the second array, whether its scalar or array. When the value

in the first array and the second array are both arrays, array_replace_

recursive() will replace their respective value recursively.

Parameters
array

The array in which elements are replaced

replacements

Arrays from which elements will be extracted

Return values
Returns an array or null if an error occurs

 array_replace
Replaces elements from passed arrays into the first array

array_replace(array $array, array ...$replacements): array

array_replace() replaces the values of array with values having the

same keys in each of the following arrays. If a key from the first array exists

in the second array, its value will be replaced by the value from the second

array. If the key exists in the second array, and not the first, it will be

created in the first array. If a key only exists in the first array, it will be left

as is. If several arrays are passed for replacement, they will be processed in

order, the later arrays overwriting the previous values.

array_replace() is not recursive: it will replace values in the first array

by whatever type is in the second array.

Chapter 6 arrays

115

Parameters
array

The array in which elements are replaced

replacements

Arrays from which elements will be extracted. Values from later arrays

overwrite the previous values.

Return values
Returns an array or null if an error occurs

 array_reverse
Return an array with elements in reverse order

array_reverse(array $array, bool $preserve_keys = false): array

Parameters
array

The input array

preserve_keys

If set to true, numeric keys are preserved. Non-numeric keys are not

affected by this setting and will always be preserved.

Return values
Returns the reversed array

 array_search
Searches the array for a given value and returns the first corresponding key

if successful

array_search(mixed $needle, array $haystack, bool $strict =

false): int|string|false

Chapter 6 arrays

116

Searches for needle in haystack

Parameters
needle

The searched value

Note If the needle is a string, the comparison is done in a case-
sensitive manner.

haystack

The array

strict

If the third parameter, strict, is set to true, the array_search()

function will search for identical elements in the haystack. This means it

will also perform a strict type comparison of the needle in the haystack,

and objects must be the same instance.

Return values
Returns the key for needle if it is found in the array and false otherwise

If needle is found in haystack more than once, the first matching key

is returned. To return the keys for all matching values, use array_keys()

with the optional search_value parameter instead.

 array_shift
Shifts an element off the beginning of array

array_shift(array &$array): mixed

array_shift() shifts the first value of the array off and returns it,

shortening the array by one element and moving everything down. All

numerical array keys will be modified to start counting from 0 while literal

keys won’t be affected.

Parameters
array

Chapter 6 arrays

117

The input array

Return values
Returns the shifted value or null if array is empty or is not an array

 array_slice
Extracts a slice of the array

array_slice(

 array $array,

 int $offset,

 ?int $length = null,

 bool $preserve_keys = false

): array

array_slice() returns the sequence of elements from the array array

as specified by the offset and length parameters.

Parameters
array

The input array

offset

If offset is non-negative, the sequence will start at that offset in

the array.

If offset is negative, the sequence will start that far from the end of

the array.

Note the offset parameter denotes the position in the array, not
the key.

length

If length is given and is positive, the sequence will have up to that

many elements in it.

Chapter 6 arrays

118

If the array is shorter than the length, only the available array elements

will be present.

If length is given and is negative, the sequence will stop that many

elements from the end of the array.

If it is omitted, the sequence will have everything from offset up until

the end of the array.

preserve_keys

Note array_slice() will reorder and reset the integer array
indices by default. this behavior can be changed by setting
preserve_keys to true. string keys are always preserved,
regardless of this parameter.

Return values
Returns the slice. If the offset is larger than the size of the array, an

empty array is returned.

 array_splice
Removes a portion of the array and replaces it with something else

array_splice(

 array &$array,

 int $offset,

 ?int $length = null,

 mixed $replacement = []

): array

Removes the elements designated by offset and length from the

array array and replaces them with the elements of the replacement array,

if supplied.

Chapter 6 arrays

119

Parameters
array

The input array

offset

If offset is positive, then the start of the removed portion is at that

offset from the beginning of the array array.

If offset is negative, then the start of the removed portion is at that

offset from the end of the array array.

length

If length is omitted, remove everything from offset to the end of

the array.

If length is specified and is positive, that many elements will be

removed.

If length is specified and is negative, the end of the removed portion

will be that many elements from the end of the array.

If length is specified and is 0, no elements will be removed.

Tip to remove everything from offset to the end of the array
when replacement is also specified, use count($input) for length.

replacement

If a replacement array is specified, then the removed elements are

replaced with elements from this array.

If offset and length are such that nothing is removed, the elements

from the replacement array are inserted in the place specified by the offset.

If replacement is just one element, it is not necessary to put array()

or square brackets around it, unless the element is an array itself, an object

or null.

Return values
Returns an array consisting of the extracted elements

Chapter 6 arrays

120

 array_sum
Calculates the sum of values in an array

array_sum(array $array): int|float

Parameters
array

The input array

Return values
Returns the sum of values as an integer or float, or 0 if the array

is empty

 array_udiff_assoc
Computes the difference of arrays with an additional index check and

compares data by a callback function

array_udiff_assoc(array $array, array ...$arrays, callable

$value_compare_func): array

Parameters
array

The first array

arrays

Arrays to compare against

value_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values

Chapter 6 arrays

121

array_udiff_assoc() returns an array containing all the values from

the array that are not present in any of the other arguments. Note that

the keys are used in the comparison, unlike array_diff() and array_

udiff(). The comparison of the arrays’ data is performed by using a user-

supplied callback. In this aspect, the behavior is opposite the behavior of

array_diff_assoc(), which uses an internal function for comparison.

 array_udiff_uassoc
Computes the difference of arrays with an additional index check and

compares data and indexes by a callback function

array_udiff_uassoc(

 array $array,

 array ...$arrays,

 callable $value_compare_func,

 callable $key_compare_func

): array

Note that the keys are used in the comparison, unlike array_diff()

and array_udiff().

Parameters
array

The first array

arrays

Arrays to compare against

value_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

key_compare_func

Chapter 6 arrays

122

The comparison of keys (indices) is done also by the callback function

key_compare_func. This behavior is unlike what array_udiff_assoc()

does, since the latter compares the indices by using an internal function.

Return values
Returns an array containing all the values from array that are not

present in any of the other arguments

 array_udiff
Computes the difference of arrays by using a callback function for data

comparison

array_udiff(array $array, array ...$arrays, callable $value_

compare_func): array

This is unlike array_diff(), which uses an internal function for

comparing the data.

Parameters
array

The first array

arrays

Arrays to compare against

value_compare_func

The callback comparison function. The comparison function must

return an integer less than, equal to, or greater than zero if the first

argument is considered to be respectively less than, equal to, or greater

than the second.

callback(mixed $a, mixed $b): int

Return values
Returns an array containing all the values of array that are not present

in any of the other arguments

Chapter 6 arrays

123

 array_uintersect_assoc
Computes the intersection of arrays with an additional index check and

compares data by a callback function

array_uintersect_assoc(array $array, array ...$arrays, callable

$value_compare_func): array

Note that the keys are used in the comparison, unlike in array_

uintersect(). The data is compared by using a callback function.

Parameters
array

The first array

arrays

Arrays to compare against

value_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Returns an array containing all the values of array that are present in

all the arguments

 array_uintersect_uassoc
Computes the intersection of arrays with an additional index check and

compares data and indexes by separate callback functions

array_uintersect_uassoc(

 array $array1,

 array ...$arrays,

Chapter 6 arrays

124

 callable $value_compare_func,

 callable $key_compare_func

): array

Parameters
array1

The first array

arrays

Further arrays

value_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

key_compare_func

Key comparison callback function

Return values
Returns an array containing all the values of array1 that are present in

all the arguments

 array_uintersect
Computes the intersection of arrays and compares data by a callback

function

array_uintersect(array $array, array ...$arrays, callable

$value_compare_func): array

Parameters
array

The first array

arrays

Chapter 6 arrays

125

Arrays to compare against

value_compare_func

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Returns an array containing all the values of array that are present in

all the arguments

 array_unique
Removes duplicate values from an array

array_unique(array $array, int $flags = SORT_STRING): array

It takes an input array and returns a new array without

duplicate values.

Note that keys are preserved. If multiple elements compare equally

under the given flags, then the key and value of the first equal element will

be retained.

Note two elements are considered equal if and only if (string)
$elem1 === (string) $elem2; in other words, when the string
representation is the same, the first element will be used.

Parameters
array

The input array

flags

Chapter 6 arrays

126

The optional second parameter of flags may be used to modify the

sorting behavior using these values:

Sorting type flags:
SORT_REGULAR compares items normally (doesn’t change types).

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

SORT_LOCALE_STRING compares items as strings, based on the

current locale.

Return values
Returns the filtered array

 array_unshift
Prepends one or more elements to the beginning of an array

array_unshift(array &$array, mixed ...$values): int

Note that the list of elements is prepended as a whole, so that the

prepended elements stay in the same order. All numerical array keys

will be modified to start counting from zero while literal keys won’t be

changed.

Parameters
array

The input array

values

The values to prepend

Return values
Returns the new number of elements in the array

 array_values
Returns all the values of an array and indexes the array numerically

Chapter 6 arrays

127

array_values(array $array): array

Parameters
array

The array

Return values
Returns an indexed array of values

 array_walk_recursive
Applies a user function recursively to every member of an array

array_walk_recursive(array|object &$array, callable $callback,

mixed $arg = null): bool

This function will recurse into deeper arrays.

Parameters
array

The input array

callback

Typically, callback takes on two parameters, the array parameter’s

value and the key/index.

arg

If the optional arg parameter is supplied, it will be passed as the third

parameter to the callback.

Return values
Returns true on success or false on failure

 array_walk
Applies a user-supplied function to every member of an array

Chapter 6 arrays

128

array_walk(array|object &$array, callable $callback, mixed $arg

= null): bool

array_walk() is not affected by the internal array pointer of array.

array_walk() will walk through the entire array regardless of pointer

position.

Parameters
array

The input array

callback

Typically, callback takes on two parameters, the array parameter’s

value and the key/index.

Only the values of the array may potentially be changed; its structure

cannot be altered, so the programmer cannot add, unset, or reorder

elements. If the callback does not respect this requirement, the behavior of

this function is undefined and unpredictable.

arg

If the optional arg parameter is supplied, it will be passed as the third

parameter to the callback.

Return Values
Returns true

 array
Creates an array

array(mixed ...$values): array

Read the section on the array type for more information on what an

array is.

Parameters
values

Chapter 6 arrays

129

The syntax “index => values", separated by commas, defines index and

values. index may be of type string or integer. When index is omitted, an

integer index is automatically generated, starting at 0. If index is an integer,

the next generated index will be the biggest integer index + 1. Note that

when two identical indexes are defined, the last overwrite the first.

Having a trailing comma after the last defined array entry, while

unusual, is a valid syntax.

Return values
Returns an array of the parameters. The parameters can be given an

index with the => operator. Read the section on the array type for more

information on what an array is.

 arsort
Sorts an array in descending order and maintains index association

arsort(array &$array, int $flags = SORT_REGULAR): bool

It sorts an array in place in descending order, such that its keys

maintain their correlation with the values they are associated with. This

is used mainly when sorting associative arrays where the actual element

order is significant.

Parameters
array

The input array

flags

The optional second parameter flags may be used to modify the sorting

behavior using these values:

Sorting type flags:
SORT_REGULAR compares items normally; the details are described in

the comparison operators section.

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

Chapter 6 arrays

130

SORT_LOCALE_STRING compares items as strings, based on the current

locale. It uses the locale, which can be changed using setlocale().

SORT_NATURAL compares items as strings using “natural ordering” like

natsort().

SORT_FLAG_CASE can be combined (bitwise OR) with SORT_STRING or

SORT_NATURAL to sort strings case-insensitively.

Return values
Always returns true

 assort
Sorts an array in ascending order and maintains index association

asort(array &$array, int $flags = SORT_REGULAR): bool

Sorts array in place in ascending order, such that its keys maintain

their correlation with the values they are associated with. This is used

mainly when sorting associative arrays where the actual element order is

significant.

Parameters
array

The input array

flags

The optional second parameter flags may be used to modify the sorting

behavior using these values:

Sorting type flags:
SORT_REGULAR compares items normally; the details are described in

the comparison operators section.

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

SORT_LOCALE_STRING compares items as strings, based on the current

locale. It uses the locale, which can be changed using setlocale().

Chapter 6 arrays

131

SORT_NATURAL compares items as strings using “natural ordering” like

natsort().

SORT_FLAG_CASE can be combined (bitwise OR) with SORT_STRING or

SORT_NATURAL to sort strings case-insensitively.

Return values
Always returns true

 compact
Creates array containing variables and their values

compact(array|string $var_name, array|string ...$var_

names): array

For each of these, compact() looks for a variable with that name in the

current symbol table and adds it to the output array such that the variable

name becomes the key and the contents of the variable become the value

for that key. In short, it does the opposite of extract().

Parameters
var_name

var_names

compact() takes a variable number of parameters. Each parameter

can be either a string containing the name of the variable or an array of

variable names. The array can contain other arrays of variable names

inside it; compact() handles it recursively.

Return values
Returns the output array with all the variables added to it

 count
Counts all elements in an array or in a Countable object

count(Countable|array $value, int $mode = COUNT_NORMAL): int

Chapter 6 arrays

132

When used with an object that implements the Countable interface, it

returns the return value of the method Countable::count().

Parameters
value

An array or Countable object

mode

If the optional mode parameter is set to COUNT_RECURSIVE (or 1),

count() will recursively count the array. This is particularly useful for

counting all the elements of a multidimensional array.

Caution count() can detect recursion to avoid an infinite loop but
will emit an E_WARNING every time it does (in case the array contains
itself more than once) and return a count higher than may be expected.

Return values
Returns the number of elements in value. Prior to PHP 8.0.0, if the

parameter was neither an array nor an object that implements the

Countable interface, 1 would be returned, unless the value was null, in

which case 0 would be returned.

 current
Returns the current element in an array

current(array|object $array): mixed

Every array has an internal pointer to its “current” element, which is

initialized to the first element inserted into the array.

Parameters
array

The array

Chapter 6 arrays

133

Return values
The current() function simply returns the value of the array element

that’s currently being pointed to by the internal pointer. It does not move

the pointer in any way. If the internal pointer points beyond the end of the

elements list or the array is empty, current() returns false.

Warning this function may return a Boolean false but may also
return a non-Boolean value that evaluates to false. please read the
section on Booleans for more information. Use the === operator for
testing the return value of this function.

 each
Returns the current key and value pair from an array and advances the

array cursor

each(array|object &$array): array

After each() has executed, the array cursor will be left on the next

element of the array or past the last element if it hits the end of the array.

You have to use reset() if you want to traverse the array again using each.

Parameters
array

The input array

Return values
Returns the current key and value pair from the array array. This

pair is returned in a four-element array, with the keys 0, 1, key, and value.

Elements 0 and key contain the key name of the array element, and 1 and

value contain the data.

If the internal pointer for the array points past the end of the array

contents, each() returns false.

Chapter 6 arrays

134

 end
Sets the internal pointer of an array to its last element and returns its value.

end(array|object &$array): mixed

Parameters
array

The array. This array is passed by reference because it is modified

by the function. This means you must pass it a real variable and not a

function returning an array because only actual variables may be passed

by reference.

Return values
Returns the value of the last element or false for empty array

 extract
Imports variables into the current symbol table from an array

extract(array &$array, int $flags = EXTR_OVERWRITE, string

$prefix = ""): int

Checks each key to see whether it has a valid variable name. It also

checks for collisions with existing variables in the symbol table.

Warning Do not use extract() on untrusted data, like user input
(e.g., $_GET, $_FILES).

Parameters
array

An associative array. This function treats keys as variable names and

values as variable values. For each key/value pair, it will create a variable in

the current symbol table, subject to flags and prefix parameters.

Chapter 6 arrays

135

You must use an associative array; a numerically indexed array will not

produce results unless you use EXTR_PREFIX_ALL or EXTR_PREFIX_INVALID.

flags

The way invalid/numeric keys and collisions are treated is determined

by the extraction flags. It can be one of the following values:

EXTR_OVERWRITE

If there is a collision, overwrite the existing variable.

EXTR_SKIP

If there is a collision, don’t overwrite the existing variable.

EXTR_PREFIX_SAME

If there is a collision, prefix the variable name with the prefix.

EXTR_PREFIX_ALL

Prefix all variable names with the prefix.

EXTR_PREFIX_INVALID

Only prefix invalid/numeric variable names with the prefix.

EXTR_IF_EXISTS

Only overwrite the variable if it already exists in the current symbol

table; otherwise, do nothing. This is useful for defining a list of valid

variables and then extracting only those variables you have defined out of

$_REQUEST, for example.

EXTR_PREFIX_IF_EXISTS

Only create prefixed variable names if the non-prefixed version of the

same variable exists in the current symbol table.

EXTR_REFS

Extracts variables as references. This effectively means that the values

of the imported variables are still referencing the values of the array

parameter. You can use this flag on its own or combine it with any other

flag by OR’ing the flags.

If flags is not specified, it is assumed to be EXTR_OVERWRITE.

prefix

Chapter 6 arrays

136

Note that prefix is only required if flags is EXTR_PREFIX_SAME, EXTR_

PREFIX_ALL, EXTR_PREFIX_INVALID, or EXTR_PREFIX_IF_EXISTS. If the

prefixed result is not a valid variable name, it is not imported into the

symbol table. Prefixes are automatically separated from the array key by an

underscore character.

Return values
Returns the number of variables successfully imported into the

symbol table

 in_array
Checks if a value exists in an array

in_array(mixed $needle, array $haystack, bool $strict =

false): bool

Searches for needle in haystack using loose comparison unless

strict is set

Parameters
needle

The searched value

Note If needle is a string, the comparison is done in a case-
sensitive manner.

haystack

The array

strict

If the third parameter called strict is set to true, the in_array()

function will also check the types of the needle in the haystack.

Return values
Returns true if needle is found in the array and false otherwise

Chapter 6 arrays

137

 key_exists
Alias of array_key_exists

 key
Fetches a key from an array

key(array|object $array): int|string|null

key() returns the index element of the current array position.

Parameters
array

The array

Return values
The key() function simply returns the key of the array element that

is currently being pointed to by the internal pointer. It does not move the

pointer in any way. If the internal pointer points beyond the end of the

elements list or the array is empty, key() returns null.

 krsort
Sorts an array by key in descending order

krsort(array &$array, int $flags = SORT_REGULAR): bool

Sorts an array in place by keys in descending order

Parameters
array

The input array

flags

The optional second parameter named flags may be used to modify

the sorting behavior using these values:

Sorting type flags:

Chapter 6 arrays

138

SORT_REGULAR compares items normally; the details are described in

the comparison operators section.

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

SORT_LOCALE_STRING compares items as strings, based on the current

locale. It uses the locale, which can be changed using setlocale().

SORT_NATURAL compares items as strings using “natural ordering” like

natsort().

SORT_FLAG_CASE can be combined (bitwise OR) with SORT_STRING or

SORT_NATURAL to sort strings case-insensitively.

Return values
Always returns true

 ksort
Sorts an array by key in ascending order

krsort(array &$array, int $flags = SORT_REGULAR): bool

Parameters
array

The input array

flags

The optional second parameter named flags may be used to modify

the sorting behavior using these values:

Sorting type flags:
SORT_REGULAR compares items normally; the details are described in

the comparison operators section.

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

SORT_LOCALE_STRING compares items as strings, based on the current

locale. It uses the locale, which can be changed using setlocale().

Chapter 6 arrays

139

SORT_NATURAL compares items as strings using “natural ordering” like

natsort().

SORT_FLAG_CASE can be combined (bitwise OR) with SORT_STRING or

SORT_NATURAL to sort strings case-insensitively

Return values
Always returns true

 list
Assigns variables as if they were an array

list(mixed $var, mixed ...$vars = ?): array

Like array(), this is not really a function but a language construct.

list() is used to assign a list of variables in one operation. Strings can’t be

unpacked and list() expressions can’t be completely empty.

Parameters
var

A variable

vars

Further variables

Return values
Returns the assigned array

 natcasesort
Sorts an array using a case-insensitive “natural order” algorithm

natcasesort(array &$array): bool

natcasesort() is a case insensitive version of natsort(). This

function implements a sort algorithm that orders alphanumeric strings in

the way a human being would while maintaining key/value associations.

This is described as a “natural ordering."

Chapter 6 arrays

140

Parameters
array

The input array

Return values
Always returns true

 natsort
Sorts an array using a “natural order” algorithm

natsort(array &$array): bool

This function implements a sort algorithm that orders alphanumeric

strings in the way a human being would while maintaining key/value

associations. This is described as a “natural ordering."

Parameters
array

The input array

Return values
Always returns true

 next
Advances the internal pointer of an array

next(array|object &$array): mixed

next() behaves like current(), with one difference. It advances the

internal array pointer one place forward before returning the element

value. This means it returns the next array value and advances the internal

array pointer by one.

Parameters
array

The array being affected

Return values

Chapter 6 arrays

141

Returns the array value in the next place that’s pointed to by the

internal array pointer or false if there are no more elements.

Warning this function may return Boolean false but may also
return a non-Boolean value that evaluates to false. please read the
section on Booleans for more information. Use the === operator for
testing the return value of this function.

pos
Alias of current

 prev
Rewinds the internal array pointer

prev(array|object &$array): mixed

prev() behaves just like next(), except it rewinds the internal array

pointer one place instead of advancing it.

Parameters
array

The input array

Return values
Returns the array value in the previous place that’s pointed to by the

internal array pointer, or false if there are no more elements.

Warning this function may return Boolean false but may also
return a non-Boolean value that evaluates to false. please read the
section on Booleans for more information. Use the === operator for
testing the return value of this function.

Chapter 6 arrays

142

 range
Creates an array containing a range of elements

range(string|int|float $start, string|int|float $end, int|float

$step = 1): array

Parameters
start

First value of the sequence

end

The sequence is ended upon reaching the end value.

step

If a step value is given, it will be used as the increment (or decrement)

between elements in the sequence. step must not equal 0 and must not

exceed the specified range. If not specified, step will default to 1.

Return values
Returns an array of elements from start to end, inclusive

 reset
Sets the internal pointer of an array to its first element

reset(array|object &$array): mixed

reset() rewinds array’s internal pointer to the first element and

returns the value of the first array element.

Parameters
array

The input array

Return values
Returns the value of the first array element or false if the array is empty

Chapter 6 arrays

143

Warning this function may return Boolean false but may also
return a non-Boolean value that evaluates to false. please read the
section on Booleans for more information. Use the === operator for
testing the return value of this function.

 rsort
Sorts an array in descending order

rsort(array &$array, int $flags = SORT_REGULAR): bool

Parameters
array

The input array

flags

The optional second parameter, flags, may be used to modify the

sorting behavior using these values:

Sorting type flags:
SORT_REGULAR compares items normally; the details are described in

the comparison operators section.

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

SORT_LOCALE_STRING compares items as strings, based on the current

locale. It uses the locale, which can be changed using setlocale().

SORT_NATURAL compares items as strings using “natural ordering” like

natsort().

SORT_FLAG_CASE can be combined (bitwise OR) with SORT_STRING or

SORT_NATURAL to sort strings case-insensitively.

Return values
Always returns true

Chapter 6 arrays

144

 shuffle
Shuffles an array

shuffle(array &$array): bool

This function shuffles (randomizes the order of the elements in) an

array. It uses a pseudo random number generator that is not suitable for

cryptographic purposes.

Parameters
array

The array

Return values
Returns true on success or false on failure.

 sizeof
Alias of count

 sort
Sorts an array in place in ascending order

sort(array &$array, int $flags = SORT_REGULAR): bool

Parameters
array

The input array

flags

The optional second parameter, flags, may be used to modify the

sorting behavior using these values:

Sorting type flags:
SORT_REGULAR compares items normally; the details are described in

the comparison operators section.

Chapter 6 arrays

145

SORT_NUMERIC compares items numerically.

SORT_STRING compares items as strings.

SORT_LOCALE_STRING compares items as strings, based on the current

locale. It uses the locale, which can be changed using setlocale().

SORT_NATURAL compares items as strings using “natural ordering” like

natsort().

SORT_FLAG_CASE can be combined (bitwise OR) with SORT_STRING or

SORT_NATURAL to sort strings case-insensitively.

Return values
Always returns true

 uasort
Sorts an array with a user-defined comparison function and maintains

index association

uasort(array &$array, callable $callback): bool

Sorts array in place such that its keys maintain their correlation with

the values they are associated with, using a user-defined comparison

function. This is used mainly when sorting associative arrays where the

actual element order is significant.

Parameters
array

The input array

callback

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Always returns true

Chapter 6 arrays

146

 uksort
Sorts an array by keys using a user-defined comparison function

uksort(array &$array, callable $callback): bool

Parameters
array

The input array

callback

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Always returns true

 usort
Sorts an array by values using a user-defined comparison function

usort(array &$array, callable $callback): bool

Parameters
array

The input array

callback

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respectively less

than, equal to, or greater than the second.

callback(mixed $a, mixed $b): int

Return values
Always returns true

Chapter 6 arrays

147

 Summary
Overall, arrays can be as simplistic or as complex as you desire. Once you

get comfortable with them, they are a great tool to have in your toolbox.

In this chapter, you learned how to hold multiple values of similar

types in a single variable using PHP arrays, which can be indexed,

associative, and multidimensional. You also learned about the most

common PHP array functions.

In the next chapter, you will learn how to use sessions, which are used

in PHP to keep track of your activity in applications, and cookies, which are

used to store limited data like a user’s identity.

Chapter 6 arrays

149

CHAPTER 7

Sessions and Cookies
In the previous chapters, you learned how to use arrays, one of the most

versatile and useful elements in PHP, to store multiple values within a

single variable. Let’s now imagine you need to store some information to

be used across multiple web pages. You need to store some information on

a local computer (client side) or store some information on a server (server

side) for just a certain time using the web page. How would you do this? By

using sessions and cookies.

The main difference between sessions and cookies is that cookies,

as previously said, are used to store some user information on a local

computer as client-side files while sessions are server-side files that store

user information on a web server.

While cookies expire right after the specified lifetime you define,

sessions end when you close the web browser or when you log out of the

web page or program.

This chapter consists of the following sections:

• PHP Sessions

• PHP Cookies

 PHP Sessions
Sessions are what PHP uses to keep track of your activity on applications.

For example, when you log into an application, make some changes,

upload some images, and then leave the site, that’s a session.

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_7

https://doi.org/10.1007/978-1-4842-8082-9_7

150

The application knows who you are and has been passing around and

keeping track of a variable ($_SESSION) the whole time. Session variables

hold information about individual users and are passed around the

application to keep track of user activity.

Unlike normal variables, sessions need to be initiated in order to

maintain integrity. To do this, PHP has a session_start() function. After

this, session variables are set with the $_SESSION global variable.

Let’s make a simple page with a basic session declaration. Open the

chapter7 folder and the first_session.php file.

<?php

// Start the session

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Set session variables

$_SESSION["firstname"] = "Foo";

$_SESSION["username"] = "barFoo";

echo "Session variables are set.";

?>

</body>

</html>

So, session data has been set, but where is it? Sessions are stored on

the server side so you can’t view them through methods such as inspect

element. You can, however, use var_dump() to ensure that they are stored

correctly.

Go browse back to chapter7 and open first_session2.php.

Chapter 7 SeSSionS and CookieS

151

Great! So now you are saving session variables. For the real test, go back

to chapter7 and find session_test.php. If you can open up a brand new

page and still recall the session data, then you have success. All you need to

do in session_test.php is use the start_session() function to access the

session data. Go ahead and click session_test.php to view the data.

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Echo session variables that were set on previous page

echo "Favorite color is " . $_SESSION["favcolor"] . ".
";

echo "Favorite animal is " . $_SESSION["favanimal"] . ".";

?>

</body>

</html>

And for your last trick, let’s view the session variables and then destroy

them! This will remove the session information that is currently active from

the use of session_start().

Click remove_session.php in the chapter7 directory to view and

remove the session data. Here is what remove_session.php looks like:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

Chapter 7 SeSSionS and CookieS

152

<?php

echo "Here are the variables:
";

var_dump($_SESSION);

echo "

";

// remove all session variables

session_unset();

echo "Here are the variables after session_unset:
";

var_dump($_SESSION);

echo "

";

// destroy the session

session_destroy();

echo "Here are the variables after session_destroy:
";

var_dump($_SESSION);

echo "

";

?>

</body>

</html>

Let’s take this concept and put it into a real-life situation, like a login

page connected to a database. http://localhost/chapter7/ will show

you a file called seedDB.php. Go ahead and click it. You will use this file to

seed your database with some information. If all is working properly, you

should see output in your browser that shows

Seeing Users into table..1..2..3

Users added

1 - tom - hanks - 1234 - 2022-04-15 17:39:21

2 - billy - mitchell - 1234 - 2022-04-15 17:39:21

3 - mega - man - 1234 - 2022-04-15 17:39:21

This is the test data you can use for this example. Open up login.php

and take a look at the code.

Chapter 7 SeSSionS and CookieS

153

<?php

// to Start a PHP session

session_start();

?>

<html>

<body>

 <div class="container">

 <form method="post" action="">

 <div id="div_login">

 <h1>Login</h1>

 <div>

 <input type="text"

class="textbox" id="first_

name" name="first_name"

placeholder="first_name" />

 </div>

 <div>

 <input type="password"

class="textbox"

id="password"

name="password"

placeholder="Password"/>

 </div>

 <div>

 <input type="submit"

value="Submit" name="submit"

id="submit" />

 </div>

 </div>

 </form>

 </div>

<?php

Chapter 7 SeSSionS and CookieS

154

// DB Host name

$host = "mysql-db";

// DB User

$user = "user";

// DB Password

$password = "pass";

// Database name

$db = "beginningPHP";

$connection = mysqli_connect($host, $user, $password, $db);

// If the connection fails

if (!$connection) {

 // Display message and terminate script

 die("Connection failed: " . mysqli_connect_error());

}

// If the submit button is pressed

if(isset($_POST['submit'])){

 // Escape special characters in a string

 $first_name = mysqli_real_escape_string($connection,

$_POST['first_name']);

 $password = mysqli_real_escape_string($connection,

$_POST['password']);

 // If username and password are not empty

 if ($first_name != "" && $password != ""){

 // Query database to find user with matching username

and password

Chapter 7 SeSSionS and CookieS

155

 $query = "select count(*) as countUser from

users where first_name='".$first_name."' and

password='".$password."'";

 // Store query result

 $result = mysqli_query($connection, $query);

 // Fetch row as associative array

 $row = mysqli_fetch_array($result);

 // Get number of rows

 $count = $row['countUser'];

 // If number of row is more than zero

 if($count > 0){

 // Set matched user as current user

 $_SESSION['first_name'] = $first_name;

 $_SESSION['timestamp'] = date("h:i:sa");

 // Display success message

 echo "You are logged in!";

 if (isset($_SESSION)) {

 echo "

";

 print_r($_SESSION);

 }

 // Else if number of row is less than zero

 } else {

 // Display failed message

 echo "Error! Invalid first_name and

password.";

 }

 }

Chapter 7 SeSSionS and CookieS

156

}

?>

</body>

</html>

Let’s break this down line by line.

<?php

// to Start a PHP session

session_start();

Here you are using the session_start() function to start your session.

?>

<html>

<body>

 <div class="container">

 <form method="post" action="">

 <div id="div_login">

 <h1>Login</h1>

 <div>

 <input type="text"

class="textbox" id="first_

name" name="first_name"

placeholder="first_name" />

 </div>

 <div>

 <input type="password"

class="textbox"

id="password"

name="password"

placeholder="Password"/>

 </div>

Chapter 7 SeSSionS and CookieS

157

 <div>

 <input type="submit"

value="Submit" name="submit"

id="submit" />

 </div>

 </div>

 </form>

This is your basic form that you will use to gather the credentials from

your user. Use consistent naming with the database for easier tracking.

This can be anything from “username”/“password” to “user”/“secret.”

 </div>

<?php

// DB Host name

$host = "mysql-db";

// DB User

$user = "user";

// DB Password

$password = "pass";

// Database name

$db = "beginningPHP";

$connection = mysqli_connect($host, $user, $password, $db);

This connects to your database using the credentials that will be used

throughout this book. Below, you check for the connection and show an

error if it fails for any reason:

// If the connection fails

if (!$connection) {

Chapter 7 SeSSionS and CookieS

158

 // Display message and terminate script

 die("Connection failed: " . mysqli_connect_error());

}

// If the submit button is pressed

if(isset($_POST['submit'])){

 // Escape special characters in a string

 $first_name = mysqli_real_escape_string($connection,

$_POST['first_name']);

 $password = mysqli_real_escape_string($connection,

$_POST['password']);

 // If username and password are not empty

 if ($first_name != "" && $password != ""){

You need to check the input and sanitize it before introducing it to the

database. This will help prevent MySQL injection attacks.

 $query = "select count(*) as countUser from

users where first_name='".$first_name."' and

password='".$password."'";

Here is your query to check if the first_name value in the database is

equal to $first_name from the form.

 // Store query result

 $result = mysqli_query($connection, $query);

 // Fetch row as associative array

 $row = mysqli_fetch_array($result);

 // Get number of rows

 $count = $row['countUser'];

 // If number of row is more than zero

Chapter 7 SeSSionS and CookieS

159

 if($count > 0){

 // Set matched user as current user

 $_SESSION['first_name'] = $first_name;

 $_SESSION['timestamp'] = date("h:i:sa");

 // Display success message

 echo "You are logged in!";

 if (isset($_SESSION)) {

 echo "

";

 print_r($_SESSION);

 }

 // Else if number of row is less than zero

 } else {

 // Display failed message

 echo "Error! Invalid first_name and

password.";

 }

 }

}

?>

</body>

</html>

Use the test data “tom” and password “1234” to test. You can always go

back to the chapter7 directory and run remove_session.php to clear out

or log out the session data.

Please note that for preventing SQL injection you can use PDO (PHP

data objects), which is an abstraction layer that can be used for database

queries as an alternative to MySQLi.

Chapter 7 SeSSionS and CookieS

160

 PHP Cookies
Cookies are often used to identify a user. A cookie is a small file that is

embedded on the user’s computer by the server. Remember that session

variables are stored on the server, unlike cookies. Each time the same

computer requests a page, the cookie is available for the application to

read and identify the user. PHP can be used to both create and retrieve

these cookie values.

Similar to sessions, you need to make use of a built-in PHP function

named setcookie() to begin using them. The syntax for setting a cookie is

setcookie(name, value, expire, path, domain, secure, httponly);

Name is the only required value. Go a head and open first_cookie.php

from chapter7 and look at the code.

<?php

$cookie_name = "username";

$cookie_value = "Betchy McCleaver";

setcookie($cookie_name, $cookie_value, time() + (86400 * 30),

"/"); // 86400 = 1 day

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name])) {

 echo "Cookie named '" . $cookie_name . "' is not set!";

} else {

 echo "Cookie '" . $cookie_name . "' is set!
";

 echo "Value is: " . $_COOKIE[$cookie_name];

}

?>

Chapter 7 SeSSionS and CookieS

161

In this example, you are creating a cookie named username and

setting the value to Betchy McCleaver (my eighth-grade science teacher).

The expiration date of the cookie is 30 days. You come to this value by

multiplying 86,400 (the total number of seconds in 24 hours/one day) by

30 (the length in days that you want the cookie to stay valid). Next, you set

which part of your website can access the cookie: / , meaning any PHP

application from the domain. To retrieve the cookie, much like $_SESSION,

you use $_COOKIE.

Go to the chapter7 directory on your localhost in the browser and click

first_cookie.php. You will see that it says the cookie is not set. This is

because it is the first time you’ve run the script. Press refresh and you will

see the cookie! You can verify the cookie through inspect element in your

browser. Right-click the page and press inspect element and then click

Application on the top right side and then Cookies on the left column, as

shown in Figure 7-1.

Figure 7-1. Inspection element page to check on cookie information

Chapter 7 SeSSionS and CookieS

162

Now let’s modify a cookie.

Open up modify_cookie.php. Change the value of username to

Jason Bourne. You can verify this by refreshing the page or by the inspect

element method above.

To delete a cookie, you basically invalidate the time. The cookie is

created but set to a past date for expiration. This will invalidate and remove

the cookie from your system.

<?php

// set the expiration date to one hour ago

setcookie("username", "", time() - 3600);

?>

<html>

<body>

<?php

echo "Cookie 'user' is deleted.";

?>

</body>

</html>

You can click delete_cookie.php for a working example of this.

A good habit to get into is to check if cookies are enabled before relying

on them.

<?php

setcookie("test_cookie", "test", time() + 3600, '/');

?>

<html>

<body>

<?php

if(count($_COOKIE) > 0) {

 echo "Cookies are enabled.";

Chapter 7 SeSSionS and CookieS

163

} else {

 echo "Cookies are disabled.";

}

?>

</body>

</html>

Here you attempt to set an arbitrary cookie and then read it. If you can

verify that the cookie is set, you know the user has cookies enabled!

 Summary
In this chapter, you learned how to use sessions and cookies in the PHP

language to keep track of your activity on web applications. You saw how to

create, store, and manage information in PHP sessions and cookies.

In the next chapter, you will learn how to use PHP objects, which are

another compound data type. They are similar to arrays, which can be set

and used with multiple types of information, from strings to all types of

numbers.

Chapter 7 SeSSionS and CookieS

165

CHAPTER 8

Objects
So far, we have covered several data types, including the string, integer, and

float. You’ve learned how to use strings, integers, and arrays. Each of these

types has their own benefits and limitations. An integer cannot use the

letter “s” as a value, and a string can contain an integer of “1.” With arrays,

you learned about the idea of a compound data type. This data type allows

for combining and intermixing of different elements. An array can contain

both letters and numbers, contain specific key-pair values (associative

array), or just contain an organized set of data. The end result is that values

of more than one type can be stored together in a single variable.

In this brief chapter, we will focus on a PHP data type we touched on in

Chapters 2 and 4: the object.

Please notice that, in general, classes and objects are the two main

aspects of object-oriented programming and are therefore very important.

To understand how classes and objects are interlinked, we could say that a

class is a template for an object and an object is an instance of a certain class.

Similar to arrays, you can set and use multiple types of information,

from strings to all types of numbers. Objects, however, give you the ability to

define specific functionality. This functionality is set in the class definition.

So, when you create an individual object, it will inherit all the

properties and behaviors from the class it’s linked to, but each object will

still have different values for the properties.

Objects are user-defined classes that can store both values and

functions and must be explicitly declared.

Let’s take a look at some basic examples.

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_8

https://doi.org/10.1007/978-1-4842-8082-9_8

166

<?php

class Vegetable {

 // Properties

 public $name;

 public $color;

 // Methods

 function set_name($name) {

 $this->name = $name;

 }

 function get_name() {

 return $this->name;

 }

}

?>

Here you are declaring a class named Vegetable. This class contains

both properties and methods. Remember that properties are variables

and methods are functions. The two properties are $name and $color. The

two methods are set_name and get_name. They are commonly referred to

as “getters and setters.” These types of methods are common with objects

because you are constantly “getting” and “setting” values to the class

properties. It is very convenient to create these helper type functions. If

you have these functions in your objects, you will only need to remember

to $vegetable->get_name(); and $vegetable->set_name();.

Here is another example of an object:

<?php

class SayHi{

 function hi(){

 echo "Hello World";

 }

}

Chapter 8 ObjeCts

167

$obj=new SayHi;

$obj->hi();

?>

Output: Hello World

In some cases, you may want to create an object on the fly. PHP has

stdClass, which allows you to do this.

<?php

$obj=new stdClass;

$obj->name="gunnard";

$obj->age=26;

$obj->twitter="@gunnard";

print_r($obj);

?>

 Output
This will produce following result:

stdClass Object(

 [name] => gunnard

 [age] => 26

 [twitter] => @gunnard

)

Let’s start fresh with a basic class and see how changes in the class

affect the object. You will create a Beverage class to classify and track

information on beverages at the pizzeria that you run.

Chapter 8 ObjeCts

168

<?php

class Beverage {

 public $name;

 public $type;

 public $temperature;

 public $price;

 public $sale;

}

In order to use this class as an object, you need to instantiate it. This is

done through the new keyword.

<?php

$cola = new Beverage();

?>

Now you have an object with the name $cola, which contains the

properties you defined in the class Beverage. You can use this object by

assigning values to the properties with the -> operator. This will allow you

to assign specific values to each property.

<?php

$cola = new Beverage();

$cola->name = "Rocky Cola";

$cola->type = "Soda";

$cola->teperature = "45 f";

$cola->price = "0.50";

$cola->sale = null;

?>

Now that you can set values to your class properties, let’s add class

methods or functions within a class that allow objects to manipulate data.

For example,

Chapter 8 ObjeCts

169

<?php

class Beverage {

 public $name;

 public $type;

 public $temperature;

 public $price;

 public $sale;

}

function getMenuName() {

 return $this->type:.' '.$this->name.' '.$this->price;

}

?>

With getMenuName, the intention is to display the type, name, and price

of the beverage. This can be used when displaying the full menu of the

restaurant. Instead of using the object to return the name, type, and price,

and THEN formatting it, you can take care of all of that in this method.

The $this variable refers to the current object in use. When you invoke

the getMenuName() method, $this refers to the specific object that calls

the method. Object methods are accessed similarly to properties, using the

object operator ->, but as with any function, there are parentheses at the

end, as in ().

 Summary
In this chapter, you learned how to use a PHP object, which is another

compound data type. It is similar to an array, which can be set and use

with multiple types of information, from strings to all types of numbers.

In the next chapter, you will learn how …

Chapter 8 ObjeCts

171

CHAPTER 9

PHP Exceptions,
Validation,
and Regular
Expressions
PHP is indeed one of the most used programming languages in the world

to develop applications and websites on the Internet. PHP 8 is a very

dynamic, flexible programming language; it’s also easy to use as embedded

language, for instance, for HTML.

In this chapter, you will learn all about exceptions, form validation, and

regular expressions. What are they and when do we need to use them?

PHP is indeed very flexibility programming language, also when it

comes to handling exceptions, which are out-of-the-ordinary scenarios

that may occur in code. A code exception can be something like an input

or code bug, and PHP version 8, compared to previous versions, has been

updated to be more secure and to handle more exceptions better.

We will explain how to use PHP exceptions using try, catch,

and throw.

Also, as developer, you will need to do web form validation, which

means validating certain values entered in a PHP form of various input

field types like text boxes, checkboxes, radio buttons, and checklists.

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_9

https://doi.org/10.1007/978-1-4842-8082-9_9

172

Finally, we will describe the usage of PHP regular expressions, which

are simply a sequence of characters that form a search pattern and can be

used, for instance, to check with your PHP code if a provided string of text

contains a certain pattern of characters.

This chapter consists of the following sections:

• PHP Exceptions (try, catch, finally, and throw)

• PHP Form Validation (validating Name and

E-Mail values)

• PHP Regular Expressions

 PHP Exceptions
As we said in the introduction of the chapter, an exception in a

programming language is simply an unexpected outcome of a PHP

program. Your goal is to tell your code how to handle any unexpected

outcome by itself, where possible.

Please remember that the main difference between an error and an

exception is that an exception will disrupt the normal flow of your code but

by adding some additional code it can be handled while an error cannot

be handled by the code itself. You will see how to use PHP to handle

exceptions thrown and catch them.

PHP, like all programming languages, must have a code exception

mechanism to handle runtime errors, also known exceptions. This, in PHP

and any other language, is necessary to maintain the normal flow of the

application.

Each language includes a set of throwable exceptions and errors. In

PHP, there are many different types of errors that may occur in your code.

Here are some:

Chapter 9 php exCeptions, Validation, and regular expressions

173

• CompileError

• ParseError

• TypeError

• ArithmeticError

PHP also include an exception called implements throwable, which

can be the following:

• ClosedGeneratorException: Occurs when trying to

attempt to perform a traversal on a generator that has

already been closed or terminated.

• DOMException: When an operation is impossible to

perform for logical reasons

• ErrorException: Used to convert a PHP error to an

exception

• IntlException: As per the PHP documentation, this

class is used for generating exceptions when errors

occur inside an intl function. Such exceptions are only

generated when intl.use_exceptions is enabled.

PHP can help us handle runtime errors such as IOException,

SQLException, ClassNotFoundException, and many more.

Let’s start with an example where unfortunately the exception is not

caught, generating a fatal error issued with an "Uncaught Exception"

message.

In this example, you will throw an exception without catching it by

sending the number 3 to a PHP function named checkMyNum, which is

expecting only a value of 1 or below.

Here is the code:

Chapter9/exception1.php

Chapter 9 php exCeptions, Validation, and regular expressions

174

<?php

//here we create a function with an exception

function checkMyNum($mynumber) {

 if($mynumber>1) {

 throw new Exception("The entered number must be 1 or

below!!");

 }

 return true;

}

checkMyNum(3);

?>

Fatal error: Uncaught exception 'Exception'

with message The entered number must be 1 or below!!' in C:\

mytest.php:5

Stack trace: #0 C:\mytest.php(11):

checkMyNum(3) #1 {main} thrown in C:\mytest.php on line 5

To fix this error, let’s see how to handle and correct the above uncaught

exception error by using PHP exception handling ways named try, catch,

and throw.

• try: The try block includes your function triggered in

the case of an exception of your code. If no exception

triggers the try, the code will simply continue as

normal. If an exception is triggered, it means that the

exception is "thrown."

• throw: This is how you trigger a certain exception but

remember that each throw must have at least one catch

in the code.

Chapter 9 php exCeptions, Validation, and regular expressions

175

• catch: The catch block mainly retrieves the exception

occurred and creates an object containing the

exception information and decides what to do, like

print an error message.

• finally: The finally block can be specified after or

instead of a catch block. The code within the finally

block will always be executed after the try and catch

blocks, regardless of whether an exception has been

thrown and before normal execution resumes.

The syntax of the try...catch...finally block looks like this:

<?php

try {

 // do something in our code

} catch (Exception $e) {

 // code to handle any exception

} finally {

 // code to clean up the resource and complete the code

execution

}

In general, this is what happens when you run the code and an

exception is triggered:

• The current state of your code will be saved.

• The execution of your code will be switched

automatically to the predefined exception handler

function you added in the code.

• Finally, the handler function will halt the execution

of program, will either resume the execution from the

last saved code state, or continue the execution of your

code from another part of it.

Chapter 9 php exCeptions, Validation, and regular expressions

176

Let’s now take your uncaught exception error PHP code and fix it with

try, catch, finally, and throw methods.

Chapter9/exception2.php

<?php

//here we create a function with an exception

function checkMyNum($mynumber) {

 if($mynumber>1) {

 throw new Exception("The entered number must be 1 or

below!!");

 }

 return true;

}

//let's trigger the exception in a "try" block sending the

number 3

try {

 checkMyNum(3);

 //In the case of the exception thrown, this text will not be

shown to the user

 echo 'The number you entered is 1 or below!!';

}

//our code will catch exception and generate a message

catch(Exception $e) {

echo 'Caught exception: ', $e->getMessage(), "\n";

}

// finally block to complete our code execution process

finally {

 echo "Code execution completed.";

}

?>

Chapter 9 php exCeptions, Validation, and regular expressions

177

The output of this code is the following:

Caught exception: The entered number must be 1 or below!!

Code execution completed.

Let’s explain the code.

• You create a checkMyNum() function, which simply

checks if a number is greater than 1.

• Since you sent the number 3, the exception within the

checkMyNum() function is thrown

• The checkMyNum() function is called in the try block.

• Your code in the catch block will simply retrieve the

exception and create the object ($e) that contains

the exception information, in your case to print the

“Caught exception” error message using echo, which

finally will print the error message from the exception

by calling $e->getMessage().

• The finally block will complete your code, just closing

the code execution and writing the message “Code

execution completed.”

Please remember that you can develop your own PHP customized

exception handler by just creating a special class with functions that can be

called when a certain exception occurs in your PHP code. This customized

exception handler class must be an extension of the exception class.

Let’s see next how to validate a PHP web form.

 PHP Form Validation
Web form validation at the client side is very important for security reasons,

helping developers protect PHP forms from hackers and spammers.

Chapter 9 php exCeptions, Validation, and regular expressions

178

You may need to perform a PHP form validation of the values

entered in a PHP form containing various types of fields like text boxes,

checkboxes, radio buttons, and checklists.

Say you have an HTML web form and you want to use PHP to validate

the values entered in the form prior sending it to the server.

First, build a simple HTML web form like this:

Chapter9/form-action.html

<!DOCTYPE HTML>

<html>

<head>

</head>

<body>

<h2>PHP Form Validation</h2>

<form method="post" action="form-action.php" >

 Name: <input type="text" name="name">

 E-mail: <input type="text" name="email">

 <input type="submit" name="submit" value="Submit">

</form>

</body>

</html>

When you run your HTML form, it will look like Figure 9-1.

Figure 9-1. HTML form web page

Chapter 9 php exCeptions, Validation, and regular expressions

179

Now you need to write some PHP code that will allow you to simply verify

the values entered as Name and E-mail before they are sent to the server.

Suppose you wish to have the HTML value of Name required and that

it must only contain letters and whitespace. The E-mail value will also

be required and must contain a valid email address (including @ and . as

typical email format characters).

Let’s start from the previous HTML web page and add some PHP

validation code. Create a new PHP file named form-action.php, which for

now will only validate if the values entered are not empty:

Chapter9/form-action.php

<!DOCTYPE HTML>

<html>

<head>

<style>

.error {color: #FF0000;}

</style>

</head>

<body>

<?php

$name = "";

$email = "";

$nameError = "";

$emailError = "";

 if (empty($_POST["name"])) {

 $nameError = "Name is required";

 }

 if (empty($_POST["email"])) {

 $emailError = "Email is required";

 }

?>

Chapter 9 php exCeptions, Validation, and regular expressions

180

<h2>PHP Form Validation</h2>

<p>* required field</p>

<form method="post" action="form-action.php" >

 Name: <input type="text" name="name">

 * <?php echo $nameError;?>

 E-mail: <input type="text" name="email">

 * <?php echo $emailError;?>

 <input type="submit" name="submit" value="Submit">

</form>

</body>

</html>

When you run your PHP file, it will look like Figure 9-2.

Figure 9-2. PHP form web page

As you can see, the web form informs you that the Name and E-mail

fields are required and therefore cannot be empty. When you try to submit

the form with one or both fields empty, you will get the error messages

shown in Figure 9-3.

Chapter 9 php exCeptions, Validation, and regular expressions

181

Figure 9-3. PHP form web page submitted with empty fields

Let’s update the PHP example so that it will validate the value entered for

Name, which must only be letters and whitespace, and validate that the format of

the E-mail value must contain @ and . characters as part of the value submitted.

Here is the updated code:

Chapter9/form-action.php

<!DOCTYPE HTML>

<html>

<head>

<style>

.error {color: #FF0000;}

</style>

</head>

<body>

<?php

$name = "";

$nameError = "";

$email = "";

$emailError = "";

 if (empty($_POST["name"])) {

 $nameError = "Name is required";

Chapter 9 php exCeptions, Validation, and regular expressions

182

 } else {

 $name = test_input($_POST["name"]);

 if (!preg_match("/^[a-zA-Z-']*$/",$name)) {

 $nameError = "Error: Only letters and whitespace

allowed!";

 }

 }

 if (empty($_POST["email"])) {

 $emailError = "Email is required";

 } else {

 $email = test_input($_POST["email"]);

 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailError = "Error: Invalid email format!";

 }

 }

?>

<h2>PHP Form Validation</h2>

<p>* required field</p>

<form method="post" action="form-action.php" >

 Name: <input type="text" name="name">

 * <?php echo $nameError;?>

 E-mail: <input type="text" name="email">

 * <?php echo $emailError;?>

 <input type="submit" name="submit" value="Submit">

</form>

</body>

</html>

Chapter 9 php exCeptions, Validation, and regular expressions

183

Rerun your PHP file. Now, just entering some special characters in the

Name field and entering the E-mail value with no @ or . characters will

result in error messages that the characters are not allowed and the email

format is invalid. See Figure 9-4.

Figure 9-4. PHP form web page submitted with invalid values

When you analyze the code, you see that to validate the Name value,

you utilize the PHP regular expression function preg_match() (you will

learn more about it later in this chapter), which returns 1 if the pattern is

found in the string and 0 if it is not.

So, in your PHP code you define the function as preg_match("/^[a-

zA- Z-']*$/",$name)), where you force the value entered to have only

letters and whitespace. If not, the code will produce an error message of

“Error: Only letters and whitespace allowed!”

To validate the E-mail value, you use the PHP function named filter_

var(), which filters a variable with a specified filter and utilizes the PHP

predefined filter constant FILTER_VALIDATE_EMAIL, which validates a value

as a valid format for an entered e-mail address.

If you didn’t enter @ or ., the code will produce the error “Error: Invalid

email format!”

Let’s now learn how to use PHP regular expressions.

Chapter 9 php exCeptions, Validation, and regular expressions

184

 PHP Regular Expressions
As we said in the introduction of the chapter, a regular expression is simply a

sequence of characters that forms a searching pattern. Regular expressions

are commonly known as regex and by default they are case- sensitive.
In general, a regular expression can be a single character or a more

complicated pattern made of several characters.

They are mainly used when you need to run a text search, perform a

text replace operation, or split a string into multiple chunks, for instance.

Regular expressions use arithmetic operators (+, -, ^) to create complex

expressions.

Consider using regular expressions when

• You need to validate a certain text string in your code.

• You need to analyze and search a pattern in a certain

string or modify a text string.

• You need to search for special keywords.

• You need help with user input validation testing,

validating browser detection, spamming filtration,

password strength checking, and more.

The PHP regular expression syntax looks like this:

$pattern = "/mas[si]mo/i";

$text = "My name is Massimo.";

where

• / is the delimiter .

• mas[si]mo is the pattern you are searching for.

• i is an example of a special character you can use

with a regular expression (in this case, it forces case-

insensitive searching).

Chapter 9 php exCeptions, Validation, and regular expressions

185

• [si]: This square bracket defines which character

within a certain pattern might or might not be searched

(in this case, it means match one character, s or i).

• @Text is the given string you will search the pattern in.

In regular expressions, the delimiter can be any character, but it cannot

be a letter, number, backslash, or space.

 Regular Expressions Modifiers
Regular expressions utilize special characters named modifiers to define

how the search is performed. They include

• i: When you need to have a case-insensitive

pattern search

• m: When you need to perform a multiline search using

a pattern to search at the beginning or end of a string

to match

• u: When you need to enable a correct matching of

UTF-8 encoded patterns

 Regular Expression Metacharacters
Regular expression syntax includes the use of special characters, also

called metacharacters, with certain special meanings:

• \ is a general escape character with several uses.

• ^ means to assert start of subject (or line, in

multiline mode).

• $ means to assert end of subject or before a terminating

newline (or end of line, in multiline mode).

Chapter 9 php exCeptions, Validation, and regular expressions

186

• . means match any character except newline (by

default).

• [means start character class definition.

•] means end character class definition.

• | means the start of an alternative branch.

• (means start a subpattern.

•) means end a subpattern.

• ? extends the meaning of (, also 0 or 1 quantifier, also

makes greedy quantifiers lazy (see repetition).

• * is used for 0 or more quantifiers.

• + is used for 1 or more quantifiers.

• { is a start min/max quantifier.

• } is an end min/max quantifier.

 Regular Expression Square Brackets
In a regular expression, square brackets surrounding a pattern of

characters are called a character class, So [abcdef] will match a single

character out of your list of specified characters. In this example of

a regular expression, [abcdef] will only match the a, b, c, d , e, or f

characters and nothing else.

Here is how square brackets can be used with regular expressions:

• [abc] means match one character from the options in

the brackets.

• [^abc] means match any character NOT in the brackets.

• [0-9] means match one character from the

range 0 to 9.

Chapter 9 php exCeptions, Validation, and regular expressions

187

 Regular Expression Quantifiers
Regular expressions also include so-called quantifiers to specify the

specific number of times that a character or a group of characters can be

repeated in a regular expression. Here are some examples:

• a+ matches any string that contains at least one

character a.

• a* matches any string that contains zero or more

occurrences of the character a.

• a{x} matches any string that contains the letter a

exactly x times.

• a{2} matches any string that contains the letter a

exactly two times.

• a{x,y} matches any string that contains a between x

and y times.

Finally, PHP regular expressions use grouping via parentheses to apply

quantifiers to entire patterns.

 Regular Expression Functions
Let’s have a look now at the major regular expression functions that are

used with PHP:

• preg_match() returns 1 if the pattern is found in the

string and 0 if it is not.

• preg_match_all() returns the number of how many

times the pattern was found in the string or false on

failure.

Chapter 9 php exCeptions, Validation, and regular expressions

188

• preg_replace() returns a new string where matched

patterns have been replaced with another string; otherwise,

the subject is returned unchanged or null if an error occurrs.

Let’s start your first example of PHP regular expression using preg_

match(), which will return 1 if the pattern is found in the string and 0 if it is

not. Here is the code:

Chapter 9 (regexpress1.php)

<?php

$pattern = "/massimo/i";

$text = "My name is Massimo.";

if(preg_match($pattern, $text)){

 echo "Match was found!"; }

else{

 echo "Match was not found."; }

?>

The output of this code is Match was found! because “Massimo” is in

the text and the i means case-insensitive, which means “Massimo” and

“Massimo” are the same.

Removing the i from the pattern means a match will be not found

because regular expressions are by default case-sensitive.

Let’s have the same example but using some squared brackets.

Chapter 9/regexpress2.php

<?php

$pattern = "/mas[trgs]imo/i";

$text = "My name is Massimo.";

if(preg_match($pattern, $text)){

 echo "Match was found!"; }

else{

 echo "Match was not found."; }

?>

Chapter 9 php exCeptions, Validation, and regular expressions

189

The output of this code is Match was found! as “Massimo” is in the

text, with the i meaning case-insensitive but in this case one of the needed

characters, s, is in the square bracket of [trgs], which means match one

character from the options in the brackets. Since s is in the square bracket,

the pattern is found.

Here’s an example using the metacharacter $, which means look for a

match at the end of the string:

Chapter9/regexpress3.php

<?php

$pattern = "/imo$/";

$text = "Massimo";

if(preg_match($pattern, $text)){

 echo "Match was found!"; }

else{

 echo "Match was not found."; }

?>

The output of this code is Match was found! as the pattern “imo” is

found at the end of the text “Massimo.”

Let’s create an example of a regular expression with a group and

quantifier. You want to search for a match in a string that contains the

letters “co” exactly two times.

Chapter9/regexpress4.php

<?php

$pattern = "/(co){2}/i";

$text = "I like coconut.";

if(preg_match($pattern, $text)){

 echo "Match was found!"; }

else{

 echo "Match was not found."; }

?>

Chapter 9 php exCeptions, Validation, and regular expressions

190

The output of this code is Match was found! because the pattern “co”

is found exactly two times in the text “I love coconut.”

Let’s create a new PHP example of a regular expression using preg_

match_all(), which will return the number of how many times the pattern

was found in the string.

Chapter9/regexpress5.php

<?php

$pattern = "/na/i";

$text = "My name is Massimo and I was born in Naples";

echo preg_match_all($pattern, $text);

?>

The output of this code is 2 because the pattern “na” is found two

times: in the words “name” and “Naples,” because you added I so the case

is insensitive.

Finally, let’s create a new PHP example of a regular expression using

preg_replace(), which returns a very new string where matched patterns

are replaced with another string.

Chapter9/regexpress6.php

<?php

$pattern = "/red/i";

$text = "My favorite color is red!";

echo preg_replace($pattern, "blue", $text);

?>

The output of this code is “My favorite color is blue!” because the

pattern “red” is found in the text and is replaced with the new text “blue.”

The case is insensitive because you added i.

Chapter 9 php exCeptions, Validation, and regular expressions

191

 Summary
In this chapter, you first learned about PHP proper exceptions and how

to deal with them using the try, throw, and catch methods. Then you

saw how to use PHP to validate client HTML form values entered before

sending the value to the server. Finally, you learned about PHP regular

expressions, which are used almost everywhere in current application

programming, allowing you to search for a specific pattern of characters

inside a given string.

In the next chapter, you will see PHP and MySQL working together and

learn how to create MySQL databases, tables, and use PHP programming

code to handle them.

Chapter 9 php exCeptions, Validation, and regular expressions

193

CHAPTER 10

PHP and MySQL
Working Together
As you have seen so far, PHP is very capable and easy to manipulate and

use to display data. Where does this data come from? There are two types

of data that PHP can use: static and dynamic. We can think of static data

as non-changing and dynamic as able-to-be-changed. This dynamic data

is stored in a database. Simply put, a database is a structured organization

of data. Think of a folder of spreadsheets. The key to databases, however,

is that we can easily search or query a database based on how we have set

up our structure. These queries can be as basic as “show me all the users’

first names” to “show me all the first names of users who registered on a

Tuesday after 2 p.m.” The query complexity comes from the SQL in MySQL

(Structured Query Language). This language, once understood, can be

used with a Mad Libs approach in PHP. We can simply replace certain

words and phrases with PHP variables in order to dynamically influence

the result of the query.

In this chapter, we will start with the basics, of course, and simply get

PHP to communicate with MySQL.

This chapter consists of the following sections:

• PHP Communication with MySQL

• MySQLi Advantages

• PHP Connection to a Database

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_10

https://doi.org/10.1007/978-1-4842-8082-9_10

194

 PHP Communication with MySQL
As you saw before, PHP needs a web server in order to run on the Web.

The same is needed for MySQL. A database server (DB) is needed to run

and maintain the database. In your Docker dev environment, you have

this already running. With Docker, you can type docker ps at any point on

your host machine (the real physical machine you are using) to see what

Docker containers you have running, as shown in Figure 10-1.

Figure 10-1. Docker containers running

On the top line is an IMAGE for mysql:8.0 and on the very right side is

the name mysql-db. In order for PHP to use MySQL, you need to connect

to it first. PHP comes with two different methods: through the MySQLi and

PDO APIs. Below are code examples of each method.

 PHP Communication with the MySQLi Method
<code>

<?php

// mysqli

$mysqli = new mysqli("mydomain", "user", "password",

"database");

$result = $mysqli->query("SELECT 'message' AS theMessage FROM

'messages'");

$row = $result->fetch_assoc();

echo $row['theMessage'];

</code>

Chapter 10 php and MySQL Working together

195

Without getting into detail, right now at least, in the context of these

examples, let’s at least break them down and see what you are doing

and why.

In this first MySQLi example, there should be some standout items that

are recognizable on first read.

<code>

$mysqli = new mysqli("db.mysite.com", "user", "password",

"database");

</code>

You have $mysqli, which is a PHP variable being set to new mysqli

with some parameters. You can gather from this that mysqli is a class and

$mysqli will become an object once created. Let’s see if you can determine

what the parameters of the class constructor are without Googling for an

answer. The first parameter is “db.mysite.com”. The db in the subdomain

stands for database so a logical guess would be that this first parameter

is the database server. The next ones are straightforward: “user” is the

username and “password” is the password for the user you are connecting

with through PHP. The final parameter of “database” is, well... the name of

the database. These four parameters are needed in order to create a valid

MySQLi connection. They can be directly input, as in this example, or you

can use variables such as $dbServer, $dbUser, $dbPass, and $dbName

and store them in a separate file for your own organization. This will often

be the case in PHP applications.

The next line is

$result = $mysqli->query("SELECT 'message' AS theMessage FROM

'messages'");

This sets $result equal to the result of the query method of the

$mysqli object. You see this in the form of the syntax $mysqli->query. The

properties that are passed make up the actual query you would like to send

to MySQL. More on these queries later.

Chapter 10 php and MySQL Working together

196

The next line is

$row = $result->fetch_assoc();

This sets the variable $row to the value of the object $result after

the fetch_assoc() method is run. After the query, you can receive your

results all at once or row by row from the server. To save resources on your

server, you want all of the data at one time. This will allow you to use PHP

to consume and parse the data however you please without bothering the

database server more than you need to. The method fetch_assoc() is in a

group of available methods for MySQL. These methods are

• mysqli_fetch_assoc() fetches a result row as an

associative array.

• mysqli_fetch_array() fetches a result row as an

associative array, a numeric array, or both.

• mysqli_fetch_row() gets a result row as an

enumerated array.

• mysqli_fetch_object() returns the current row of a

result set as an object.

In your example, $row is an array with associative values or key values

for the array. This is different from a traditional array with numbered keys:

$row['firstname'] Vs $row[0]

firstname is the associative key value used to associate with the

database column firstname. Now you have the variable $row set to the row

or rows containing the data that you queried from the database.

The next line is

echo $row['_message'];

Chapter 10 php and MySQL Working together

197

Here you use echo to show the results of the PHP function

htmlentities on the variable $row, specifically the data in the ['_

message'] id of the array. This is the specific data you are querying for.

 PHP Communication with the PDO Method
Let’s see how the PDO version of this differs.

<code>

<?php

// PDO

$pdo = new PDO('mysql:host=localhost;dbname=myDatabase, 'user',

'password');

$statement = $pdo->query("SELECT 'message' AS theMessage FROM

'messages'");

$row = $statement->fetch(PDO::FETCH_ASSOC);

echo $row['theMessage'];

</code>

The first line is

$pdo = new PDO('mysql:host=localhost;dbname=myDatabase, 'user',

'password');

Here you create a new object named $pdo from the class PDO with a

similar structure for passing the database host, database name, username,

and password to the constructor.

The next line is

$statement = $pdo->query("SELECT 'message' AS theMessage FROM

'messages'");

Here you set the $statement in a similar way to the $pdo object

method query.

Chapter 10 php and MySQL Working together

198

The next line is

$row = $statement->fetch(PDO::FETCH_ASSOC);

In a similar fashion to MySQLi, the data is fetched to an

associative array.

The last line is

echo $row['_message'];

It simply outputs the resulting data from the database.

So now that you know how to connect to MySQL TWO different ways,

which one do you use?

There really is not that much of a difference in performance between

these two ways. PHP.net’s documentation says “The impact is as low as

0.1%.” Here are some key advantages between MySQLi and PDO.

 MySQLi Advantages
• Asynchronous queries

• Ability to get more info on affected rows

• Proper database closing method

• Multiple queries at once

• Automatic cleanup with persistent connections

 PDO Advantages
• Useful fetch modes

• Allowed to pass variables and values directly in

to execute

• Ability to auto-detect variable types

Chapter 10 php and MySQL Working together

199

• Option for automatically buffered results with prepared

statements

• Named parameters

The real difference comes when using a database system outside of

MySQL or mariaDB. PDO supports 12 database types and MySQLi only

deals in MySQL-specific functionality. Since you are using MySQL 8.0 and

only want to use those functions, you are using MySQLi.

 PHP Connection to a Database
Let’s go ahead and create a connection and test your database. First, let’s

go to http://localhost/chapter4/seedDB.php.

Do you see the following?

Warning mysqli::__construct(): (hy000/2002): no such file or
directory in /var/www/chapter4/seedDB.php on line 4

Fatal error: Uncaught Error: mysqli object is already closed

in /var/www/chapter4/seedDB.php:6 Stack trace: #0 /var/www/

chapter4/seedDB.php(6): mysqli->query('Select * from u...') #1

{main} thrown in /var/www/chapter4/seedDB.php on line 6

Hmm, something must not be configured correctly. This is saying that

there is an issue on line 4 of seedDB.php. Let’s go take a look.

<code>

<?php

require_once('db.php');

$mysqli = new mysqli($DB_HOST, $DB_USER, $DB_PASS, $DB_

DATABASE);

</code>

Chapter 10 php and MySQL Working together

http://localhost/chapter4/seedDB.php

200

Line 4 is the $mysqli = new mysqli line. This looks correct to me, so

there must be an issue with the variables used in the mysqli constructor.

As you see on line 3, you are reading these variables from db.php. Let’s

open that file.

<code>

<?php

$DB_HOST = '';

$DB_USER = 'root';

$DB_PASS = 'pass';

$DB_DATABASE = 'beginningPHP';

</code>

Ahh! Look at that! In line 2, $DB_HOST is set to ‘‘and not an actual host. If

you remember, your host is set to db. Let’s go ahead and replace the empty

space with db.

<code>

<?php

$DB_HOST = 'db';

$DB_USER = 'root';

$DB_PASS = 'pass';

$DB_DATABASE = 'beginningPHP';

</code>

Ok. If you save this and reload http://localhost/chapter4/seedDB.

php, you should see some better results.

<code>

Creating table "USERS"Seeing Users into table..1..2..3

Users added

1 - tom - hanks - 2021-06-25 17:58:42

2 - billy - mitchell - 2021-06-25 17:58:42

Chapter 10 php and MySQL Working together

http://localhost/chapter4/seedDB.php
http://localhost/chapter4/seedDB.php

201

3 - mega - man - 2021-06-25 17:58:42

</code>

When you are developing applications, it is good to have some dummy

data on hand in order to test your code appropriately. The act of taking

data (dummy or actual from production) and populating a database with

it is called seeding. Here you are seeding the database beginningPGP,

specifically the table users, with three rows of user information. In this

case, you are using a simple .sql file with the data. In larger frameworks

like Laravel, this is done through migrations and a program called artisan.

This allows for you not only to seed the database with data, but for your

development team to stay on the same page with your data by allowing

these migrations to be accessed like you would access your code in

git (version control). Once you have run this page, press refresh. What

happens? The code checks first to see if the table exists and does not seed

it with user information if it already exists. Let’s write some code that will

show the users from this table.

Open showUsers.php in the chapter4 folder.

<code>

<?php

require_once('db.php');

$mysqli = new mysqli($DB_HOST, $DB_USER, $DB_PASS, $DB_

DATABASE);

$query = "SELECT * FROM users";

$result = $mysqli->query($query);

if ($result) {

 echo '<h1>Users in Database</h1>';

 while ($row = $result->fetch_assoc()) {

 echo "Name: {$row['first_name']} {$row['last_name']} =

Created: {$row['created']} </br>";

Chapter 10 php and MySQL Working together

202

 }

} else {

 echo "No Results. Have you run <a href='http://localhost/

chapter4/seedDB.php'>SeedDB?";

}

</code>

Let’s go through this line by line.

<code>

<?php

require_once('db.php');

</code>

This is the standard beginning of a PHP file. You first require the db.

php file to be loaded. Remember, this sets the variables for your database

host, user, password, and database name.

<code>

$mysqli = new mysqli($DB_HOST, $DB_USER, $DB_PASS, $DB_

DATABASE);

$query = "SELECT * FROM users";

</code>

<code>

$result = $mysqli->query($query);

</code>

Here you use the object $mysqli and its method query to submit your

query to the database. The result will be set as the variable $result.

<code>

if ($result) {

 echo '<h1>Users in Database</h1>';

 while ($row = $result->fetch_assoc()) {

Chapter 10 php and MySQL Working together

203

 echo "Name: {$row['first_name']} {$row['last_name']} =

Created: {$row['created']} </br>";

 }

} else {

 echo "No Results. Have you run <a href='http://localhost/

chapter4/seedDB.php'>SeedDB?";

}

</code>

This code may look complex but you are doing some pretty basic

(for humans) logic. In programming languages, this type of “obvious to

humans” logic takes precise logic handling in order to make sure that you

account for all situations and stay away from errors. The if ($result) is

PHP checking if $result evaluates to any “truthy” value. This can be

• Boolean TRUE

• Non-empty value

• Non-NULL value

• Non-zero number

You are basically asking if any useful data was found and returned to

you. You will handle the scenario of nothing being returned a few lines

down. First, let’s deal with the data you do have.

<code>

 echo '<h1>Users in Database</h1>';

 while ($row = $result->fetch_assoc()) {

 echo "Name: {$row['first_name']} {$row['last_name']} =

Created: {$row['created']} </br>";

 }

</code>

Chapter 10 php and MySQL Working together

204

Here you echo out a header for the page using the HTML <h1> tags.

Then you begin a while loop, which in PHP loop from beginning to end

until a specified condition is meet. You can think of this like “while the

traffic light is green, keep driving” or “while the pasta is not cooked, keep

cooking.” Once either of those two conditions change (the traffic light

becomes red or the pasta is cooked), the loop will stop. In your code, you

are saying “while $row is equal to data fetched from the database as an

associative array, run the loop.” Your loop is simple and it echoes your

results from the database one row at a time. Once $row does not equal

data from the database or the database is finished returning data, this loop

will stop.

<code>

} else {

 echo "No Results. Have you run <a href='http://localhost/

chapter4/seedDB.php'>SeedDB?";

}

</code>

This else corresponds to the if ($results) from above. This is what

happens if $result comes back empty. When this happens, you want to

return some kind of useful error to the user and not just standard MySQL

or PHP errors. These types of errors can be used against you by attackers.

Here you echo to the user that perhaps the database is empty and they

may need to run the seedDB file you ran earlier in order to put data into the

database.

Here you see the use of MySQLi (as opposed to PDO) to connect PHP

to the database, resulting in a database object named $mysqli. You want

to select everything from the users table in your database so you use the

query SELECT * FROM users. SELECT tells MySQL that you are requesting

data. The * means everything. FROM tells MySQL where you want to get this

data from, which is expected to be given as the next term. Finally, users

is the table you want to get the data from. This is one of the most general

Chapter 10 php and MySQL Working together

205

queries you can do in MySQL. Let’s modify this a bit. What if you want to

retrieve the list of names in alphabetical order by last name? Modify the

query and run this:

<code>

$query = "SELECT * FROM users ORDER by last_name ASC"

</code>

This code is also found in showUsers2.php.

This query looks very similar to the first one but with some modifiers.

After users you add ORDER, which tells MySQL that you would like to

have your data returned in an ordered fashion. At this point, you have not

told MySQL anything else. You need two factors for MySQL to be able to

order these results. First, you need to tell MySQL which column of data

you would like to have ordered. Currently, you have id, first_name,

last_name, and created. In your query, you have ORDERED by last_name,

which satisfies this first requirement, but now you need to tell MySQL

which order. There are two main options: ascending (ASC) or descending

(DESC). Ascending, when dealing with strings like last names, is A-Z

because the numeric value for a is smaller than z so this is considered to be

ascending. The reverse is DESC, which would be Z-A. If you run this code

now, you should see this output:

<code>

Users in Database

Name: tom hanks = Created: 2021-06-28 14:17:45

Name: mega man = Created: 2021-06-28 14:17:45

Name: billy mitchell = Created: 2021-06-28 14:17:45

</code>

Another useful modifier for this query is LIMIT. Let’s say, for example,

there are thousands of users in this database but you only want the top

three ordered by score. This query would look like the following (also

found in showUSers3.php):

Chapter 10 php and MySQL Working together

206

<code>

$query = "SELECT * FROM users ORDER by score DESC LIMIT 3";

</code>

So far you have read from the database through the SELECT query.

The purpose of using a database in the backend of your website is for data

to both read and store data. This is how photos show up on Instagram

and how tweets enter the twitterverse. A user can take their tweet (data)

and send it to the database where it gets stored in a table with specific

values assigned to the associated columns. Let’s add another user to

your database and you will see how this works. You will use PHP MySQL

prepared statements. The advantage to using prepared statements is

twofold:

 1) Over iterations of queries, there is reduced parsing

time even though the query is run more than once,

so the result is that the queries are executed with

high efficiency.

 2) PHP MySQL prepared statements can be very useful

against SQL injections.

Open up addUser.php and let’s break it down.

<code>

<?php

require_once('db.php');

$mysqli = new mysqli($DB_HOST, $DB_USER, $DB_PASS, $DB_

DATABASE);

$query = $mysqli->prepare("INSERT INTO users (first_name, last_

name, age, score) values (?,?,?,?)");

$query->bind_param("ssii",$firstName, $lastName, $age, $score);

Chapter 10 php and MySQL Working together

207

$firstName = "Freddy";

$lastName = "Krueger";

$age = 40;

$score = 301;

$query->execute();

$mysqli->close();

</code>

The first few lines should look familiar at this point. This is where you

introduce the database variables stored in db.php and create an object

named $mysqli from the mysqli class.

<code>

$query = $mysqli->prepare("INSERT INTO users (first_name, last_

name, age, score) values (?,?,?,?)");

</code>

This line looks familiar but very different. This is your INSERT query,

which you are creating for use as a prepared statement.

<code>

$query = $mysqli->prepare

</code>

Here you create a variable named $query, which is the result of the

method prepare from the object $mysqli. prepare takes the query you

want to run in MySQL but gives you the ability to bind parameters to

minimize bandwidth on the server, as you only send the parameters each

time and not the whole query. The query uses the verb INSERT, which has

a structure of

<code>

INSERT INTO <table> (column1, column2, column3, ...) VALUES

(Value1, value2, value3, ...);

</code>

Chapter 10 php and MySQL Working together

208

You use the column structure of the users table to insert values for

first_name, last_name, age, and score. But where are the values? There

are only question marks (?s). This is the binding element. MySQL looks at

these question marks and sets that space aside for the specified amount of

values to be assigned later; in your code, it is on the next line.

<code>

$query->bind_param("ssii",$firstName, $lastName, $age, $score);

</code>

This code uses the $query object you created earlier and this time you

use the bind_param method, which takes in two sets of parameters. The

first (“ssii”) in your example is the list of the types of parameters that you

are binding. You are using “ssii”, which stands for “string, string, integer,

integer” or first_name, last_name, age, score. MySQL accepts

four types:

• i: integer (i.e., 1, 199, 4421)

• d: double (1.0e6 to represent one million)

• s: string (“pants”, “Bananas”)

• b: BLOB (a binary large object is a varying-length

binary string that can be up to 2,147,483,647

characters long)

Now that you have told MySQL what types of variables to expect, you

list the variables you will be using.

<code>

$firstName = "Freddy";

$lastName = "Krueger";

$age = 40;

$score = 301;

</code>

Chapter 10 php and MySQL Working together

209

Now you assign values to the variables you have already told MySQL

you will be using for the query: two strings and two integers, just like you

declared using “ssii”.

<code>

$query->execute();

$mysqli->close();

</code>

Lastly, you execute the query by calling the method execute from the

$query object and then you close the connection to MySQL.

Go to http://localhost/chapter4/addUser.php and then back to

http://localhost/chapter4/showUser.php to see the results. You should

see one additional user in the table. If you refresh addUser multiple times,

you will get multiple additions to the table. Now that you have some basic

techniques for interacting with MySQL, in the next chapter you will take

a deeper dive into more complex queries, data organization, and MySQL

features.

 Summary
In this chapter, you learned the basics of working with PHP and

MySQL. You first learned how to connect to the DB using two methods

such as MySQLi and PDO. You learned the advantages of using one

method or the other. Finally, you explored the code needed to connect to

the DB and show the users included in it.

In the next chapter, you will learn more about the data types you can

utilize in the MySQL DB table, like CHAR and VARCHAR, and how to

define multiple dependencies in queries.

Chapter 10 php and MySQL Working together

http://localhost/chapter4/addUser.php
http://localhost/chapter4/showUser.php

211

CHAPTER 11

Data
So far, you have used MySQL to store a simple user table with a few

columns. This was good for some quick examples, but what about more

complex queries that have multiple dependencies?

In this chapter, let’s chart out some data that you can use for a camp

registration/management database.

This chapter consists of the following sections.

• Planning for a New Database

• Creation of a New Database

 Planning for a New Database
Databases work best when they are well organized with data and tables

taken into consideration. Here are a few things to consider when planning

your database:

 1) Always use the proper datatype.
One of the main MySQL best practices is to utilize datatypes dependent

on the idea or inherent nature of the information. Utilizing unessential

datatypes may eat up more space or lead to mistakes.

For instance, using VARCHAR (20) rather than a DATETIME datatype

for storing date-time values will prompt mistakes in date-time–related

computations. Additionally, it is conceivable that invalid information will

be thrown into the mix, ultimately causing mistakes.

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_11

https://doi.org/10.1007/978-1-4842-8082-9_11

212

 2) Use CHAR (1) over VARCHAR (1).
VARCHAR (1) takes additional bytes to store data, so assuming your string

is a single character, it is better to utilize CHAR (1).

 3) Utilize the CHAR datatype to store just fixed
length information.

For instance, if the length of the information is under 1,000, utilizing single

(1000) rather than VARCHAR (1000) will devour more space.

 4) Try not to use provincial date designs.
When using DATETIME or DATE datatypes, consistently use the YYYY-

MM- DD date arrangement or ISO date design reasonable for your SQL

Engine. Territorial organizations like DD-MM-YYYY or MM-DD-YYYY will

not be stored properly and will result in errors and frustration.

 5) List key sections.
It is beneficial that the inquiry returns the outcome quickly, so record the

sections that are utilized in JOIN conditions.

On the off chance that you use the UPDATE proclamation including

more than one table, file every one of the sections that are utilized to join

the tables.

 6) Do not use functions over indexed columns.
This is the purpose of an index. By trying to replicate the indexing process

through the use of functions, you are overcomplicating the situation and

therefore slowing the whole process down.

For instance, say you need to get information where the initial two

characters of the camper are GE. You use the following:

SELECT firstname FROM campers WHERE firstname like 'GE%'

Furthermore, don’t write

SELECT firstname FROM campers WHERE left (firstname,2)='GE'

Chapter 11 Data

213

The first example makes use of the index, which results in a faster

response time.

 7) Use ORDER BY clauses only if needed.
Let the PHP order your data, not MySQL. With MySQL, you can set an

order for the data to be returned by, like ASC for ascending or DESC for

descending. This can result in your queries taking additional time that PHP

or even JavaScript on your front end can do.

 8) Choose a proper database engine.
If you develop an application that reads data more often than writes it (e.g.,

a search engine), choose a MyISAM storage engine.

Choosing the wrong storage engine will affect the performance. The

storage engines available to you are MyISAM, which is the default MySQL

storage engine, or InnoDB, which is an alternative engine built into MySQL

and intended for high-performance databases. One of the main differences

between these two is table locking vs. row-level locking. Table locking is

the technique of locking an entire table when one or more cells within the

table need to be updated or deleted. Table locking is the default method

employed by the default storage engine, MyISAM. Row-level locking is the

act of locking an effective range of rows in a table while one or more cells

within the range are modified or deleted. Row-level locking is the method

used by the InnoDB storage engine and is intended for high-performance

databases.

 9) Use the EXISTS clause wherever needed.
When you need to only check if the data exists, use the MySQL EXISTS

function instead of initiating an entire query in order to evaluate the return

data. For example, use

If EXISTS(SELECT * from Table WHERE col='foo')

Do not use

If (SELECT count(*) from Table WHERE col='foo')>0

Chapter 11 Data

214

 10) EXPLAIN your SELECT queries.
MySQL comes with the ability to EXPLAIN a query in terms of how MySQL

executes the process, such as

mysql> EXPLAIN ANALYZE SELECT * FROM SALES;

+--+

| EXPLAIN |

+--+

| –> Table scan on SALES (cost=0.35 rows=1) (actual

time=0.070..0.070 rows=0 loops=1) |

+--+

1 row in set (4.15 sec)

 Creation of a New Database
With all you’ve learned so far, let’s create your new database with the

following structure:

Table Name: Campers

Columns: ID, First Name, Last Name, Age,
Camp ID, Created

Table Name: Camps

Columns: ID, Name, Size, Created

Table Name: Registered

Columns: ID, Camper ID, Camp ID, Registered,
Paid, Created

This is a basic design for a database that a camp would use in order

to keep track of their campers, camp sites, and registrations. In order to

use this properly for your project, you need to set up and create these

tables, seed them with data, and use PHP to manage them through

Chapter 11 Data

215

table relationships. While there are several front-end GUI methods of

managing MySQL, you will not be using any of them for now. We will take

you through these next steps via the command-line interface (or CLI) of

MySQL. First, get to a command prompt (Windows) or terminal (Mac OS,

Linux) and run

<code>

docker ps

</code>

Remember this command? This shows all the running containers. If

nothing shows up, you may not be running Docker for this book. Please

go back to the first chapter of this book and make sure you have Docker

running and docker-compose up has been run.

If everything is running properly, you should see something similar

to this:

docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS

PORTS NAMES

d5d98b7de503 beginning-php8-and-mysql_app "docker- php- entrypoi…"

2 days ago Up 2 days

9000/tcp php-app

63715c3c4f52 nginx:alpine "/docker- entrypoint.…"

2 days ago Up 2 days

0.0.0.0:80->80/tcp, :::80->80/tcp php-nginx

21f2a4b87b7b mysql:8.0 "docker- entrypoint.s…"

2 days ago Up 2 days

0.0.0.0:3306->3306/tcp, :::3306->3306/tcp, 33060/tcp mysql-db

You can see that your MySQL container is named mysql-db and with

Docker you can now connect to that container just like you would to

a server.

Chapter 11 Data

216

<code>

docker exec -ti mysql-db bash

</code>

This command tells Docker that you would like to execute a command

named -ti to create a pseudo TTYl. This basically allows you to use

your terminal to be the interface to this container while the i stands

for interactive mode, meaning you want to use this container like a live

system. The next attribute is mysql-db, which is the name of the container

you are connecting to, and finally you want to run bash. Bash is a shell for

Unix/Linux systems that allows you access to the filesystem and to run

scripts. Once you press Enter, you will be “inside” the My SQL container.

Once connected, you need to run the following:

<code>

mysql -uroot -ppass

</code>

This connects you to MySQL using the username root and password

pass. This is typically not encouraged, but in closed networking situations

and development environments you can allow for such casualness.

The first thing you need to know and do once connected to MySQL is

list the databases.

<code>

show databases;

</code>

Note that all MySQL commands end with a semicolon. If you type a

command and press Enter without the semicolon, it will just move down to

the next line and wait for you to type more or to type a semicolon. You can

just type a semicolon and then Enter to continue with your command.

In this list, you should see beginningPHP. Type

Chapter 11 Data

217

<code>

use beginningPHP;

</code>

Now type

<code>

show tables;

</code>

This command, well, shows the tables available in the current database

you are using. There should be a users table. This is fine and you will just

set it aside for now. Let's begin creating the tables for your camping data.

In the chapter5 directory there is a file called campers.sql.

<code>

create table IF NOT EXISTS campers(

 id INT NOT NULL AUTO_INCREMENT,

 first_name VARCHAR(100) NOT NULL,

 last_name VARCHAR(40) NOT NULL,

 age INT NOT NULL,

 campId INT default 0,

 created DATETIME NOT NULL ON UPDATE CURRENT_

TIMESTAMP default current_timestamp,

 PRIMARY KEY (id)

);

</code>

Take this code and paste it into the MySQL command line and press

Enter. Now type show tables; again.

Chapter 11 Data

218

<code>

mysql> show tables;

+------------------------+

| Tables_in_beginningPHP |

+------------------------+

| campers |

| users |

+------------------------+

2 rows in set (0.00 sec)

</code>

You now have a campers table in the database. To see the structure of a

table, type

<code>

desc campers;

</code>

Desc is for Describe and it will show you the layout for the table. Now

let’s create the table to hold the information for your camps. Look inside

camps.sql in the chapter5 directory.

<code>

create table IF NOT EXISTS camps(

 id INT NOT NULL AUTO_INCREMENT,

 camp_name VARCHAR(100) NOT NULL,

 size INT NOT NULL,

 created DATETIME NOT NULL ON UPDATE CURRENT_

TIMESTAMP default current_timestamp,

 PRIMARY KEY (id)

);

</code>

Chapter 11 Data

219

Copy and paste this code into the MySQL command line and

press Enter.

Now type show tables; and see the results:

<code>

show tables;

+------------------------+

| Tables_in_beginningPHP |

+------------------------+

| campers |

| camps |

+------------------------+

2 rows in set (0.03 sec)

</code>

Lastly, let’s create a table for the registered campers. Repeat the steps

from above with registered.sql.

Open registered.sql. Copy and paste the code into the MySQL

command line and press Enter.

Type show tables; and see the results.

Now that you have your data, let’s see next how you can use relational

queries to create simple and complex queries for your app.

 Summary
In this chapter, you learned which data types you can utilize in a

MySQL DB table, like CHAR or VARCHAR, and how to define multiple

dependencies in queries.

In the next chapter, you will combine everything you have learned into

one example website to create, read, update, and delete data (otherwise

known as CRUD). You will learn how a basic CRUD website can be a

standard way to manage information within a business or organization.

Chapter 11 Data

221

CHAPTER 12

Website with a DB
In this chapter, you will be combining everything you have learned into one

example website. This website will allow you to create, read, update, and

delete (otherwise known as CRUD). A basic CRUD website is a standard way to

manage information within a business or organization. Almost every application

out there can be broken down into CRUD if you think about it. Facebook

allows you to create posts, read posts, update them or your profile, and delete

information. This functionality is the basic interaction that most websites are

looking for, but your imagination is the limit to where you can go with it.

This chapter will cover the following:

• The PHP CRUD GET method and example functions:

deleteBook, showEditBook, showAddBook, and

showBooks

• The PHP CRUD POST method for examples

bookToUpdate and bookToAdd

For this example, you will create the basic CRUD for you to review and

add to. This CRUD uses both POST and GET methods as well as MySQL PDO

parameter binding. This is a great first step towards developing a more

dynamic and advanced application.

Let’s get right into this with home.php within the chapter12 link.

<?php

$title = "Home";

$thisDir = 12;

?>

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_12

https://doi.org/10.1007/978-1-4842-8082-9_12

222

These first lines declare some global variables.

<!DOCTYPE html>

<html lang="en">

<head>

<link href="../bootstrap/css/bootstrap.min.css"

rel="stylesheet">

</head>

<div class="container">

 <header class="d-flex flex-wrap justify-content-center

py-3 mb-4 border-bottom">

 <a href="/" class="d-flex align-items-center mb-3 mb-

md- 0 me-md-auto text-dark text-decoration-none">

 <svg class="bi me-2" width="40" height="32"><use

xlink:href="#bootstrap"></use></svg>

 <?= $title ?>

 <ul class="nav nav-pills">

 <li class="nav-item"><a href="home.php" class="nav-link"

aria-current="page">Home

 <li class="nav-item"><a href="home.php?q=add" class="nav-

link" aria-current="page">Add

 </header>

<div>

</div>

This section creates the header and navigation for the app. For now,

these links are static, but they can be made dynamic through reading

menu items from a database, for example.

Chapter 12 Website With a Db

223

<?php

try {

 echo '
';

 echo 'Current PHP version: ' . phpversion();

 echo '
';

 $host = 'mysql-db';

 $dbname = 'beginningPHP';

 $user = 'user';

 $pass = 'pass';

 $dsn = "mysql:host=$host;dbname=$dbname;charset=utf8";

 $conn = new PDO($dsn, $user, $pass);

 echo 'Database connected successfully';

 echo '
';

} catch (\Throwable $t) {

 echo 'Error: ' . $t->getMessage();

 echo '
';

}

This is your basic database connection block. Here you attempt to

connect with your credentials and return an error if there are any issues.

You will use the $conn variable next in several functions. You will need

to use global $conn within those functions because this variable exists

outside the scope of the new functions.

function deleteBook($theBook) {

 global $conn;

 $sql = "delete FROM `books` WHERE `id`=$theBook";

 $result = $conn->query($sql);

 echo "Book Deleted
";

}

Chapter 12 Website With a Db

224

This function deleteBook takes the passed-in variable $theBook

and targets the database item through a specific database query. The

function then returns “Book Deleted.” This function can be improved in

multiple ways:

• Variable sanitization to protect against SQL

injection attacks

• Verification that the item to delete exits

• Checking for MySQL errors and showing them

function showEditBook($theBook) {

 global $conn;

 $sql = "SELECT * FROM `books` WHERE `id`=$theBook";

 $result = $conn->query($sql);

 foreach($result as $row) {

 $addForm ='<form action="home.php"

method="post"><table>';

 $addForm .= '<tr><td>Title</td><td><input type="text"

name="title" value="'.$row['title'].'"></td></tr>';

 $addForm .= '<tr><td>Author</td><td><input type="text"

name="author" value="'.$row['author'].'"></td></tr>';

 $addForm .= '<tr><td>Category</

td><td><input type="text" name="category"

value="'.$row['category'].'"></td></tr>';

 $addForm .= '<tr><td>ISBN</td><td><input type="text"

name="isbn" value="'.$row['isbn'].'"></td></tr>';

 $addForm .= '<tr><td></td><td><input type="submit"

name="submit"></td></tr>';

Chapter 12 Website With a Db

225

 $addForm .= '<input type="hidden" name="bookToUpdate"

value="'.$row['id'].'">';

 $addForm .= '</table></form>';

 echo $addForm;

 }

}

The function showEditBook shows the edit book form given the book

id ($theBook). With this form, you then submit it back to home.php via

POST. With this form, you can add validation to ensure that values are

properly filled out and able to be added into the database. The hidden

field is there as an indicator to home.php as to how to handle the form

submission. You will get to that later when you update the book in a

function.

function showAddBook() {

 $addForm ='<form action="home.php" method="post"><table>';

 $addForm .= '<tr><td>Title</td><td><input type="text"

name="title"></td></tr>';

 $addForm .= '<tr><td>Author</td><td><input type="text"

name="author"></td></tr>';

 $addForm .= '<tr><td>Category</td><td><input type="text"

name="category"></td></tr>';

 $addForm .= '<tr><td>ISBN</td><td><input type="text"

name="isbn"></td></tr>';

 $addForm .= '<tr><td></td><td><input type="submit"

name="submit"></td></tr>';

 $addForm .= '<input type="hidden" name="bookToAdd"

value="true">';

 $addForm .= '</table></form>';

 echo $addForm;

}

Chapter 12 Website With a Db

226

The function showAddBook shows the Add a book form. Again, here you

use a hidden field to notify home.php via POST what action you want to take.

function showBooks() {

 global $conn;

 $sql = "SELECT * FROM `books` WHERE `id`";

 $result = $conn->query($sql);

 if ($result !== false) {

 $rowCount = $result->rowCount();

 echo "Number of Books: $rowCount
";

 }

 foreach($result as $row) {

 echo $row['id'].' - '. $row['title'] .' - '.

$row['author'] .' - '. $row['category'] .' - '.

$row['isbn'] .' [<a href="home.php?q=edit&book='.$row

['id'].'"> Edit <a href="home.php?q=delete&book='.$

row['id'].'"> Delete]
';

 }

}

The function showBooks is the default display of the page. It shows all

of the books in the database with links to edit and delete.

if (isset($_GET['q'])) {

 if ($_GET['q'] == 'add') {

 echo "Adding Book
";

 showAddBook();

 }

 if ($_GET['q'] == 'edit') {

 $theBook = $_GET['book'];

 echo "Editing Book
";

 showEditBook($theBook);

 }

Chapter 12 Website With a Db

227

 if ($_GET['q'] == 'delete') {

 $theBook = $_GET['book'];

 echo "Deleting Book
";

 deleteBook($theBook);

 }

}

Above is the logic that you use to determine what action to take via

GET. Remember that GET variables are the ones used within the URL. You

use q as the variable you assign to the action (add, edit, delete) in

your URL.

if (isset($_POST['bookToUpdate'])) {

 global $conn;

 $sql = "update books set title=?, author=?, category=?,

isbn=? where id=?";

 if ($stmt = $conn->prepare($sql)) {

 $stmt->bindParam(1,$_POST['title']);

 $stmt->bindParam(2,$_POST['author']);

 $stmt->bindParam(3,$_POST['category']);

 $stmt->bindParam(4,$_POST['isbn']);

 $stmt->bindParam(5,$_POST['bookToUpdate']);

 if($stmt->execute()) {

 echo "Book ". $_POST['title'] ."added";

 }

 } else {

 echo "Error: " . $sql . "
" . $conn->error;

 echo "</br>Stmt error: ".$stmt->error();

 }

}

The above if statement checks to see if you are calling for the variable

bookToUpdate. If this variable is set, then you attempt to update a book.

Chapter 12 Website With a Db

228

You use the PDO, as explained in Chapter 10, to prepare a statement

to ensure that you are protecting against SQL injections and to specify

variables. Once $stmt is executed, you return the book title and “added;”

otherwise, you return the error. This can be improved by

• Sanitizing POST data

• Verifying that the item in the DB is available to update

if (isset($_POST['bookToAdd'])) {

 global $conn;

 $sql = "insert into books (title, author, category, isbn)

VALUES (?,?,?,?)";

 if ($stmt = $conn->prepare($sql)) {

 $stmt->bindParam(1,$_POST['title']);

 $stmt->bindParam(2,$_POST['author']);

 $stmt->bindParam(3,$_POST['category']);

 $stmt->bindParam(4,$_POST['isbn']);

 if($stmt->execute()) {

 echo "New Book added";

 }

 }

}

This if statement checks for the POST variable bookToAdd. If it is found,

then the SQL query is created and executed. This can be improved by

• Sanitizing POST data

• Verifying that the item is not already in the DB

• All values are filled out

showBooks();

Chapter 12 Website With a Db

229

This is the default view for this page, a list of books available:

?>

 </div>

With the improvements listed above, try turning this into an API that

returns JSON data. Instead of returning HTML, the output should look

something like this pseudo-code:

$sql = "SELECT * FROM `books` WHERE `id`";

 $result = $conn->query($sql);

 if ($result !== false) {

 $rowCount = $result->rowCount();

 $output[] = "Number of Books: $rowCount";

 }

 foreach($result as $row) {

 $output[] = "title:". $row['title'];

 $output[] = "author:". $row['author'];

 $output[] = "category:". $row['category'];

 $output[] = "isbn:". $row['isbn'];

 $output = json_encode($output);

 Return $output;

 }

 Summary
In this chapter, you combined everything you have learned so far and build

one example website. You learned how to build this website to create, read,

update, and delete (otherwise known as CRUD) and use it with both POST

and GET methods as well as the MySQL PDO parameter binding.

In the next chapter, you will learn about frameworks, which use a lot of

best practices and design patterns so as to allow developers to quickly use

them to solve problems.

Chapter 12 Website With a Db

231

CHAPTER 13

Introduction
to Frameworks
After having learned in the previous chapters how to build a website, in

this chapter you will focus on programming development frameworks. You

will learn what they are and when to use them.

This chapter consists of the following sections:

• Introduction to Frameworks

• Pros and Cons of Frameworks

• MVC Pattern

• Different Layers of a Framework

• Different Types of Frameworks

• Introduction of PHP Standard Recommendation (PSR)

• PHP Frameworks

 Introduction to Frameworks
Until now, you have built the different layers of an application: the UI

components to parse values and display the view pages, connect to the

database and fetch data, authenticate use, and maintain sessions. If you

observe, these contextual areas are reusable structures and elements that

are used in every project or application based on different use cases.

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_13

https://doi.org/10.1007/978-1-4842-8082-9_13

232

They have structural value but do not add value in terms of helping

developers and teams develop new features and business logic.

Recognizing the recurrence of these common structural elements, many

smart people felt that they could be developed and packaged together

so that these structures could interface with each other and be reused.

In essence, they created a framework, which is a supporting structure

that helps you get started developing your applications, thus delivering

business value, instead of you spending time developing a session layer, a

database connection layer, and then a security component.

Frameworks use a lot of best practices and design patterns to allow

developers to quickly use them to solve problems.

With this said, should you build a framework for your own use case?

This may not be necessary since all frameworks nowadays provide a way

to install any packages you might need but are not present already within

the framework. They also allow you to build custom layers by extending

the framework or plugin systems. If they are open source, if a need arises,

you can fork them and use the foundations of existing frameworks to build

upon them.

 Pros and Cons of Frameworks
Frameworks have a lot to offer, but they are not without drawbacks. In this

section, you’ll explore the pros and cons.

 Pros of Using Frameworks
There are many benefits to using frameworks:

 1. Speeds up application development

Frameworks help you to focus on working on new

features/requirements instead of building reusable

patterns and testing the frameworks, authentication,

Chapter 13 IntroduCtIon to Frameworks

233

and authorization processes. This saves a lot of time

in terms of building the foundation of a secure,

standard code base, which a framework provides.

 2. Simplifies application maintenance

With the core foundation being maintained by the

framework team, it becomes easy for the development

team to maintain the application features and

upgrade the core framework from time to time.

 3. Decoupled patterns

Frameworks come preloaded with a variety of

patterns, which resemble a decoupled system design

like having a message queue abstraction on top of a

variety of message queue platforms, thus providing

state-of-the-art coding structures that otherwise

would be need to be developed by developers.

 4. Updated patches

Frameworks are built and maintained by a lot of

internal as well as community-based open source

developers, QA engineers, and other smart people

who take care of handling changes, upgrading

packages, integrating new features as and when

they become relevant, and patching security issues.

Given the knowledge of such a community team, it

becomes a piece of cake to get these changes just

with a version upgrade.

 5. Task automation

Frameworks provide command-line tools to create

base code for new features like a unit test case or a

controller with a standard structure, which can then

Chapter 13 IntroduCtIon to Frameworks

234

be modified by you for your application-specific

requirements. This makes it very easy to quickly

prototype and build components.

 Cons of Using Frameworks
As alluded to earlier, frameworks do have some potential drawbacks:

 1. Performance of the application is affected.

Frameworks comprise a large amount of code

for the base structure, which helps to quickly

bootstrap your projects. On the other hand, there is

a performance penalty since many components may

not be applicable to your project but still are loaded

during packaging and run time.

 2. Lack of support or active development

A framework may have an active current

development cycle but things may change in the

future. It’s crucial to consider past and current

patterns of the framework team, development, and

activity.

 3. Learning curve

Learning frameworks is a fun and challenging

task. Some frameworks are very intuitive while

others require a lot of configuration before starting.

With many base and advanced components and

concepts, learning a framework takes time on the

part of the development teams.

Chapter 13 IntroduCtIon to Frameworks

235

 MVC Pattern
MVC stands for the Model, View, and Controller Pattern. It’s a very handy

and useful design pattern that many frameworks use for separation of

concerns. In previous chapters, you divided your code into UI, routing,

processing, and a business logic layer. Similarly, frameworks separate out

code into these logical structures and allow integration and control flow

between them through many standard, evolved, and secure practices.

As shown in Figure 13-1, when any request is received by a PHP server,

it hits the controller, which is usually the routing layer responsible for

defining the GET, POST, and other REST verb-based API endpoints. The

controller functions for respective endpoints receive the request and

then call the Model layer to fetch any data or run any business logic after

fetching data from another service. After the controller receives this data,

it sends it to the View layer, which contains your UI code and generates

the dynamic UI based on the model data sent to it. Once the View layer is

processed, this is sent as response back to the browser or user.

Figure 13-1. The Model-View-Controller architecture

Chapter 13 IntroduCtIon to Frameworks

236

 Different Layers of a Framework

 1. MVC layer

All major frameworks use some variation of the

MVC pattern as the core structural component to

manage requests and control flow.

 2. Dependency injection

With many core components, like authentication/

authorization/entity access, it becomes crucial to

have a centralized logic to access these entities/

components through dynamic injection rather than

initializing them in each file where they are used,

thus enabling reuse and manageability.

 3. Authentication/authorization

Authentication/authorization allows developers to

validate users and also implement authorization

through standard practices and in many cases also

allow integration to Active Directory and other

third-party services.

 4. Session management

Session management helps to validate users once

they have logged in. In many cases, this is achieved

through token-based authentication using JWT and

other standards.

 5. Database libraries

Frameworks provide database libraries to connect to

a variety of databases.

Chapter 13 IntroduCtIon to Frameworks

237

 6. Test framework

Frameworks also provide a test framework to write

unit, functional, and integration tests. These tests

help to mock and stub internal components, thus

allowing developers to practice TDD-based design

development.

 7. Package management

Composer is the central piece of library

management, and it allows reusability of many

standard libraries across frameworks, thus helping

with interoperability among frameworks.

 8. Other

There are many other components like guard rails,

message queue management, and caching, that are

part of the core components.

 Different Types of Frameworks
Let’s quickly run through some of the different frameworks available to

PHP developers.

Based on use case:

 1. REST API-based frameworks

Many back-end applications nowadays just provide

a RESTful interface that is accessed from a front-end

application built on React or Angular or another front-

end library or framework. So many frameworks provide

an out- of- box solution to create REST API backends.

Examples: Lumen, Silex, Slim, Guzzle, Symphony

Chapter 13 IntroduCtIon to Frameworks

238

 2. FULLSTACK-based frameworks

These frameworks have some UI components

integrated to allow you to develop UI code from

within the platform.

Examples: Laravel, CakePHP, CodeIgniter, Laminas

Based on initial components packaged:

 1. Micro frameworks:

These frameworks provide you with the bare

minimum base to start, plus guidelines. These

frameworks are very light. Based on your use case,

you can choose different packages and design

patterns. This will require some extra effort and

knowledge on your part to build these patterns.

Example: Slim

 2. Full-fledged frameworks

These frameworks come with all the fire power.

In many cases, you may not need some of these

packages but they are still included when deploying

your application. The downside is the huge size of

the framework, but it’s helpful for teams to use the

already established patterns and styles.

Example: Laravel

 Role of Composer
With the emergence of many frameworks, there was a need to also have many

third-party libraries for integration to different APIs. They can be integrated

into frameworks through extensions and following framework- specific

Chapter 13 IntroduCtIon to Frameworks

239

methodology. This can be quite cumbersome since it requires extensive

knowledge of the inner workings of the framework plus the external API. In

addition, you must handle the standards, best practices, and security while

doing so. This is not the core responsibility of the developer. So, PHP introduced

a package manager that can be used to install third-party packages and libraries

that are created by community and third-party vendors. With it, developers can

reuse these libraries and get updates as and when the source team publishes

them. This helps in having a versioned library to be used across different

frameworks.

Link: https://getcomposer.org/

Installing Composer is very easy. It just takes these few commands at

https://getcomposer.org/download/.

All PHP frameworks use Composer for internal dependencies. As such,

they come prepackaged with a Composer configuration, which can be

extended.

When Composer is used, it creates a composer.json file that stores all

the installed packages with their respective version in the JSON format.

 Introduction of PHP Standard
Recommendation (PSR)
With the emergence of so many PHP frameworks and the use of Composer

for package management, to make the process easy for developers to use

different frameworks and for interoperability, there needed to be a common

standard on which all these frameworks should be based. This led to the

creation of PHP Standard Recommendations (PSR), a PHP specification

published by the PHP Framework Interoperability Group (PHP-FIG). It

serves as the standardization of programming concepts in PHP.

The goal is to enable interoperability of components and packages. The

PHP-FIG was established and formed by several PHP framework founders. The

general idea is “moving PHP forward through collaboration and standards.”

Chapter 13 IntroduCtIon to Frameworks

https://getcomposer.org/
https://getcomposer.org/download/

240

The full list of standards can be found at www.php-fig.org/

psr/#numerical-index. Some are deprecated and some are in draft status.

The current active ones can be found at www.php-fig.org/psr/#index-

by-status.

Here are a few principle areas of PSRs:

 1. Autoloading

Autoloading helps load classes and libraries by

resolving namespaces to their respective file

system paths.

Associated PSRs: PSR-4 Improved Autoloading

 2. Interfaces

Interfaces help in establishing contracts between

shareable code structures.

Associated PSRs:

• PSR-3: Logger Interface

• PSR-6: Caching Interface

• PSR-11: Container Interface

• PSR-13: Hypermedia Links

• PSR-14: Event Dispatcher

• PSR-16: Simple Cache

 3. HTTP

A standards-based approach to handle HTTP

requests and responses

Chapter 13 IntroduCtIon to Frameworks

http://www.php-fig.org/psr/#numerical-index
http://www.php-fig.org/psr/#numerical-index
http://www.php-fig.org/psr/#index-by-status
http://www.php-fig.org/psr/#index-by-status

241

Associated PSRs:

• PSR-7: HTTP Message Interfaces

• PSR-15: HTTP Handlers

• PSR-17: HTTP Factories

• PSR-18: HTTP Client

 4. Coding styles

Coding standards to reduce cognitive friction and

better readability

Associated PSRs:

• PER Coding Style

• PSR-1: Basic Coding Standard

• PSR-12: Extended Coding Style Guide

 PHP Frameworks
The following are a few popular and widely used PHP frameworks. You will

use a few of them in later chapters.

• Laravel, https://laravel.com/

• Codeigniter, www.codeigniter.com/

• Symfony, https://symfony.com/

• Cakephp, https://cakephp.org/

• Laminas, https://getlaminas.org/

Chapter 13 IntroduCtIon to Frameworks

https://laravel.com/
https://www.codeigniter.com/
http://www.codeigniter.com/
https://symfony.com/
https://symfony.com/
https://cakephp.org/
https://cakephp.org/
https://getlaminas.org/
https://getlaminas.org/

242

 Choosing a Framework
With a plethora of frameworks available, it may be a bit confusing. How do

you select the right one? Here are a few points to consider:

 1. Application/business use case compatibility

There are many use cases, and each application

is unique in terms of its requirements. Some

applications are more content-specific. For example,

managing a blog for a team for which WordPress

would be more suitable. In another case, a team

may need to build a RESTful application for which

Lumen or a similar framework may be helpful.

 2. Developer skill set

The core skill set of the development team also

plays a principal role. If the team already knows a

particular framework or design patterns particular

to a framework, it’s easy to reuse the existing

skill set.

 3. Learning curve

Timelines of projects play a major role in terms

of framework choice. Pick a framework that has

a suitable learning curve so you can quickly start

building your project.

 4. Documentation

Documentation plays a very important role.

A framework without good documentation is

like wandering in a forest without a map. Good

documentation gives developers confidence to

quickly experiment and follow up with a deep dive.

Chapter 13 IntroduCtIon to Frameworks

243

 5. Testing framework

A framework should be integrated with a test

framework that can be used to write integration,

functional, and unit tests. Many frameworks provide

easy integration of tests and also help with mocking

internal functionality of the framework so as to

easily and quickly run unit tests.

 6. Community support

A community of internal, external, and open

source commitment in terms of support and query

answering in different forums like Stack Overflow

is a very good indicator of people using it and

being interested in answering questions related to

problems they may have already faced, thus helping

development teams gain confidence.

 7. Active release/development

A framework that is actively developed and has

an active approach towards security and bug fixes

on a regular basis gives confidence towards a

future where this product will be supported on an

ongoing basis.

 8. Licenses

It’s very important to review the licenses of the

framework related to its code sharing, editing,

open source nature, and details relevant to

production use.

 9. Customization/extensibility

Chapter 13 IntroduCtIon to Frameworks

244

The ability of the framework to customize and

extend core features to support unique extensions

as per application requirements is very important.

 10. Convention vs. customization

There is always a choice between convention and

customization. Some frameworks are very particular

about conventions and rules to be followed with the

intention to reduce setup and help with a quick start

on projects, while other frameworks choose a more

open structure that can be customized as per your

choice and application structure.

 11. IDE support

With many popular IDEs nowadays, it becomes

important to support the generation of code

snippets through shortcuts instead of copy-and-

paste to improve developer productivity.

 12. Blogs/tutorials

Many frameworks provide their own internal blogs

and tutorials to leverage the expertise of the core

open community team. They also announce new

resources, features, and use cases on an ongoing

basis through news channels, announcements, and

mailing chains.

 13. Test coverage

It’s important to validate that the core framework

has full test coverage, which lays the importance of

the core teams TDD-based development practices

for the framework and also is an indicator of the

quality of the core framework.

Chapter 13 IntroduCtIon to Frameworks

245

 Summary
In this chapter, you learned why frameworks are an important part of the

software development life cycle and make the life of developers easier and

more fun by allowing them to reuse existing components of a framework to

quickly start building new features and innovations. You explored why the

choice of a framework is very important. It must be done by considering a

variety of key points as well as the application to be built.

In the next chapter, you will focus on the Laravel PHP framework,

which is a very popular web application framework that is easy to use and

has an elegant syntax.

Chapter 13 IntroduCtIon to Frameworks

247

CHAPTER 14

Introduction
to Laravel
Lately the development of web applications and websites has become

more and more simple as developers make use of development tools. Let’s

explore which PHP framework can support web developers when building

new web projects and applications.

In this chapter, you will focus on the Laravel PGP framework, which

is a very popular web application framework that is easy to use and

offers an elegant syntax. It helps you with common tasks such as a fast

routing engine, real-time event broadcasting, database-agnostic schema

migrations, and more.

This chapter consists of the following sections:

• Introduction to Laravel

• Installing Laravel

• Database Setup and Configuration

• Database Migrations

• Controller Route

• Registration View Form

• Storing User Data in a Database

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_14

https://doi.org/10.1007/978-1-4842-8082-9_14

248

 Introduction to Laravel
Laravel is a modern PHP framework based on the MVC design pattern. An

excerpt from the website explains it the best: “Laravel is a web application

framework with expressive, elegant syntax. We’ve already laid the

foundation—freeing you to create without sweating the small things.”

 Installing Laravel
There are many ways Laravel can be installed. They can be found

at https://laravel.com/docs/9.x/installation#your-first-

laravel-project.

You will be following the simplest one to get you up and running.

Please make sure these prerequisites are installed before proceeding:

• PHP

• Composer

To start a new project with the name of blog-app, run the following

command:

composer create-project laravel/laravel blog-app

The project structure looks like Figure 14-1 without the .git directory.

Chapter 14 IntroduCtIon to LaraveL

https://laravel.com/docs/9.x/installation#your-first-laravel-project
https://laravel.com/docs/9.x/installation#your-first-laravel-project

249

Figure 14-1. Laravel project directory structure

Let’s explore the common parts of the directory.

Once the project has been created, start it using the following

commands:

cd blog-app

php artisan serve

You can now access the app at http://localhost:8000, as shown in

Figure 14-2.

Chapter 14 IntroduCtIon to LaraveL

250

Figure 14-2. Laravel main web page

This should confirm a valid installation and setup of Laravel.

 Database Setup and Configuration
You will learn about the various components of Laravel as you build one

sub-part of your blog application, which is user registration. Along the way,

you will see how Laravel makes it easy for you to build such an application.

The core of any application is data, and you will need a database to

store data related to your users.

You will create the table in an incremental fashion as you proceed

through the different steps. In previous chapters you created the database

and tables manually, using the phpMyAdmin interface. This usually

works for a demo project, but while working on a production project, it is

 suggested to maintain databases and tables in migrations, which are stored

in files and can be committed to source code management systems like git.

Chapter 14 IntroduCtIon to LaraveL

251

This helps to have a repeatable data structure that can be readily used

by other team members to get quickly onboarded and set up the project

and also to create different environments for running projects like dev,

staging, and production. An added benefit is having a versioned schema

of your database and tables to understand and maintain the history of

changes for auditing and other such purposes.

Before you start setting up the migration aspect of Laravel, you must

configure the database configuration settings. They can be found in the file

config/database.php. Let’s review the contents of this file.

'default' => env('DB_CONNECTION', 'mysql'),

The default connection uses the mysql adapter, which suits your setup.

Reviewing the connections section, you see the configs specific to the

mysql connection.

'connections' => [

 'sqlite' => [

 ...

],

 'mysql' => [

 'driver' => 'mysql',

 'url' => env('DATABASE_URL'),

 'host' => env('DB_HOST', '127.0.0.1'),

 'port' => env('DB_PORT', '3306'),

 'database' => env('DB_DATABASE', ''),

 'username' => env('DB_USERNAME', 'root'),

 'password' => env('DB_PASSWORD',),

 'unix_socket' => env('DB_SOCKET', ''),

 'charset' => 'utf8mb4',

Chapter 14 IntroduCtIon to LaraveL

252

 'collation' => 'utf8mb4_unicode_ci',

 'prefix' => '',

 'prefix_indexes' => true,

 'strict' => true,

 'engine' => null,

 'options' => extension_loaded('pdo_mysql') ? array_

filter([

 PDO::MYSQL_ATTR_SSL_CA => env('MYSQL_ATTR_

SSL_CA'),

]) : [],

],

The url, host, and port values are taken from the .env environment

file. This is a good practice, rather than hard-coding the secret values in

scm. To set the right values, open up .env file in the project root. You will

find the following section:

DB_CONNECTION=mysql

DB_HOST=127.0.0.1

DB_PORT=3306

DB_DATABASE=laravel

DB_USERNAME=root

DB_PASSWORD=

Once updated, make sure to clear the cache and update the config

cache with this change by running the following commands:

php artisan cache:clear

php artisan config:cache

The output is shown in Figure 14-3.

Chapter 14 IntroduCtIon to LaraveL

253

Figure 14-3. Laravel cache cleaning command output

Replace DB_DATABASE with your blog value and also set a DB_USERNAME

and DB_PASSWORD relevant to your MySQL setup.

 Database Migrations
Laravel provides a command to create migrations:

php artisan make:migration <identity_name_for_operation>

You will create a table called users to store user data. Run the following

command to accomplish this:

php artisan make:migration create_users_table --create=users

 --table=users

The output is shown in Figure 14-4.

Figure 14-4. Laravel DB table creation

The create and table options suggest creating a table in the database

and the name of the table.

On running git status, you’ll see a new file created at database/

migrations/2022_07_31_095213_create_users_table.php. The name

may be similar for you, except the prefix, which adds a timestamp value

to it. This does not create the table yet in the database. Let's review the

contents of this file.

Chapter 14 IntroduCtIon to LaraveL

254

2022_07_31_095213_create_users_table.php

use Illuminate\Database\Migrations\Migration;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Support\Facades\Schema;

return new class extends Migration

{

 /**

 * Run the migrations.

 *

 * @return void

 */

 public function up()

 {

 Schema::create('users', function (Blueprint $table) {

 $table->id();

 $table->timestamps();

 });

 }

 /**

 * Reverse the migrations.

 *

 * @return void

 */

 public function down()

 {

 Schema::dropIfExists('users');

 }

};

Chapter 14 IntroduCtIon to LaraveL

255

From this default template, you can see two functions named up and

down. up is used to execute the current change in a migration and down is

used to revert the change. Inside the up function you can see the create

call with two fields, id and timestamps. Let’s execute the migration to

see the change reflected in your database. Before running the following

command, please make sure to remove any preexisting migration files

that might have come with the initial setup in the database/migrations

directory. Also, make sure your vendor/laravel/sanctum/database/

migrations directory is empty too.

php artisan migrate

The output is shown in Figure 14-5.

Figure 14-5. Laravel migrating output

Refreshing your tables in phpMyAdmin shows two tables, as shown in

Figure 14-6.

Figure 14-6. Laravel table refreshing output

The migrations table is a Laravel-specific table created to track the

migration changes. Figure 14-7 shows a quick look at the migrations table

schema, which specifies the one migration you did just now.

Chapter 14 IntroduCtIon to LaraveL

256

Figure 14-7. List of tables

Reviewing the users table schema shown in Figure 14-8, you see that

it has a primary key id and two timestamp fields. You may need a few

more fields like name, email, and password. You’ll add them in following

section.

Figure 14-8. Laravel table schema

Create a new migration file as follows:

php artisan make:migration update_users_table --table=users

The output is shown in Figure 14-9.

Figure 14-9. New migration file

Open the new migration file in the database/migrations directory,

which looks like the following:

<?php

Chapter 14 IntroduCtIon to LaraveL

257

use Illuminate\Database\Migrations\Migration;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Support\Facades\Schema;

return new class extends Migration

{

 /**

 * Run the migrations.

 *

 * @return void

 */

 public function up()

 {

 Schema::table('users', function (Blueprint $table) {

 //

 });

 }

 /**

 * Reverse the migrations.

 *

 * @return void

 */

 public function down()

 {

 Schema::table('users', function (Blueprint $table) {

 //

 });

 }

};

Chapter 14 IntroduCtIon to LaraveL

258

Let’s update the up method to contain the changes you want to bring

in this migration and the down method with the reverse changes so as to

remove them in case of a rollover:

 /**

 * Run the migrations.

 *

 * @return void

 */

 public function up()

 {

 Schema::table('users', function (Blueprint $table) {

 $table->string('name');

 $table->string('email');

 $table->string('password');

 });

 }

 public function down()

 {

 Schema::table('users', function (Blueprint $table) {

 $table->dropColumn('name');

 $table->dropColumn('email');

 $table->dropColumn('password');

 });

 }

Now run the migrations:

php artisan migrate

The output is shown in Figure 14-10.

Chapter 14 IntroduCtIon to LaraveL

259

Figure 14-10. Laravel migrating output

On revisiting the table schema, it has your changes. See Figure 14-11.

Figure 14-11. Changes in the table schema

Since the users table is set up, you can now create the user registration

feature. There are three subfeatures of it functionality-wise that you

will build:

 1. Controller route to load the registration view form

and accept form submit requests

 2. Registration view form

 3. Store user data in a database

 Controller Route
When you visit http://localhost:8000/register, you get the page

displayed in Figure 14-12, which is 404 not found, since you do not yet

have a route for this URL in your controller.

Chapter 14 IntroduCtIon to LaraveL

260

Figure 14-12. Laravel not-found page

On opening routes/web.php you see the following content:

<?php

use Illuminate\Support\Facades\Route;

/*

|--

| Web Routes

|--

|

| H ere is where you can register web routes for your

application. These

| routes are loaded by the RouteServiceProvider within a

group which

Chapter 14 IntroduCtIon to LaraveL

261

| contains the "web" middleware group. Now create

something great!

|

*/

Route::get('/', function () {

 return view('welcome');

});

Let’s create a sample view page file in the resources/views/ directory

named register.blade.php and set its content as follows to start with:

Registration Page

To load this page, add a route for the /register path as follows in

routes/web.php file:

Route::get('/register', function () {

 return view('register');

});

Inspecting this code, it is evident that get specifies the REST API

verb and /register the relative URI path for the get request. When the

controller intercepts a get request to the /register path, it will return the

register.blade.php page through a call to view('register').

Save the file and then visit http://localhost:8000/register and you

should see the output shown in Figure 14-13.

Figure 14-13. Registration page

Chapter 14 IntroduCtIon to LaraveL

262

You will develop the registration form later. For now, let’s create a

sample view page for the registration success page and the other route for

accepting the form submit request for registration submission.

The registration success page is at resources/views/registration_

success.blade.php.

You have been successfully registered!

The following code should be added to routes/web.php:

Route::post('/register', function () {

 return view('registration_success');

});

The above route is for a post route request sent to the /register

path and it returns the registration_success page. You will process the

data later.

To test this change, either open a terminal with the curl command

or Postman. Postman is a UI interface to run API requests. Further

documentation related to its installation and usage can be found

at https://learning.postman.com/docs/getting-started/

introduction/.

curl request:

curl --location --request POST 'http://localhost:8000/register'

The output is shown in Figure 14-14.

Chapter 14 IntroduCtIon to LaraveL

https://learning.postman.com/docs/getting-started/introduction/
https://learning.postman.com/docs/getting-started/introduction/

263

Figure 14-14. curl request comment output

The Postman request is shown in Figure 14-15.

Chapter 14 IntroduCtIon to LaraveL

264

Figure 14-15. Postman request output

The output should load 419 | Page expired. This is a security

mechanism which expects a csrf token. We will go into more details when

you build the registration form. This output should verify that at least your

POST route for the register works.

 Registration View Form
Laravel's blade engine provides many built-in features to load, loop, parse

data, and use in-built functions as needed. You will learn how to create a

form that takes as input a few fields and submits them to your /register

POST route.

To add form capabilities, install the following package, which has this

feature, by running this command:

composer require laravelcollective/html

You make changes to the view file at resources/view/registration_

success.blade.php by adding

Chapter 14 IntroduCtIon to LaraveL

265

Registration Page

{{ Form::open(array('url' => 'register')) }}

 // Form fields

{{ Form::close() }}

This creates a basic form HTML element with a form action URL set

to the /register route and a csrf token for XSS protection, as you can see

from the dev tools inspection in Figure 14-16.

Figure 14-16. Updated registration page

Next, let’s add a few fields that a user should fill in when registering.

1. Name field

{{ Form::label('name', 'Name'); }}

{{ Form::text('name'); }}

2. Email field

{{ Form::label('email', 'Email'); }}

{{ Form::email('email', $value = null, $attributes =

array()); }}

3. Password field

{{ Form::label('password', 'Password'); }}

{{ Form::password('password'); }}

4. Submit button

{{ Form::submit('Register'); }}

Chapter 14 IntroduCtIon to LaraveL

266

These field elements should be added between the Form::open and

Form::close calls.

The final view page code should like the following:

Registration Page

{{ Form::open(array('url' => 'register')) }}

{{ Form::label('name', 'Name'); }}

{{ Form::text('name'); }}

{{ Form::label('email', 'Email'); }}

{{ Form::email('email', $value = null, $attributes =

array()); }}

{{ Form::label('password', 'Password'); }}

{{ Form::password('password'); }}

{{ Form::submit('Register'); }}

{{ Form::close() }}

Reloading the page should show output like Figure 14-17.

Chapter 14 IntroduCtIon to LaraveL

267

Figure 14-17. Refreshed registration page

Try filling in the field details with some sample values and click

the Register button to see the form POST submit request in action. On

submitting, it will look like Figure 14-18.

Figure 14-18. Successful registration page

 Storing User Data in a Database
You have the view and controllers set up, but you are not yet doing

anything with the data. One of the important parts is to parse the POST

request-submitted data, validate it, and then save it to the database.

To keep it simple, you will only parse the data and save it to the

database. Note that validation is very important before processing user-

submitted data.

Now that you have been able to post data to a route end, you will parse

the different values. These values are available as part of the Request object

passed to the route method. Let’s see it in practice. Make the following

changes to the post route method in routes/web.php:

use Illuminate\Http\Request;

....

Chapter 14 IntroduCtIon to LaraveL

268

Route::post('/register', function (Request $request) {

 return view('registration_success');

});

Different values can be accessed by accessing properties on the

$request object. For example, to fetch the email value, use $request->

email. Now you know how to parse the different post parameters, so you

can proceed to using these values to save them in database.

Laravel uses Eloquent, which is an object relational mapper (ORM),

which makes it very flexible to interact with databases. With this approach,

each table has a respective model that is used to interact with that table.

Eloquent reference: https://laravel.com/docs/9.x/eloquent

ORM: https://en.wikipedia.org/wiki/

Object%E2%80%93relational_mapping

Let’s create a model for your user table at app/Models/User.php with

the following command:

php artisan make:model User

The output is shown in Figure 14-19.

Figure 14-19. Model creation output

If you want to create a migration file at same time, please add the

 --migration option.

php artisan make:model User --migration

This creates a file at app/Models/User.php with the following default

template:

<?php

Chapter 14 IntroduCtIon to LaraveL

269

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{

 use HasFactory;

}

To add more fields, such as name, email, and password, add the

following code to the class body:

 /**

 * The attributes that are mass assignable.

 *

 * @var array<int, string>

 */

 protected $fillable = [

 'name',

 'email',

 'password',

];

 /**

 * The attributes that should be hidden for serialization.

 *

 * @var array<int, string>

 */

 protected $hidden = [

 'password',

];

Chapter 14 IntroduCtIon to LaraveL

270

Now your User model is ready to be used. To use the User model in

your controller, update routes/web.php with the following namespace to

declare the User model:

use App\Models\User;

....

Route::post('/register', function (Request $request) {

 User::create([

 'name' => $request->name,

 'email' => $request->email,

 'password' => Hash::make($request->password)

]);

 return view('registration_success');

});

This will save the user details in the user table and return the

registration success template to the user. Notice you are using the Hash

helper to one-way hash the password so that the password is stored in an

encrypted format in database for security purpose. The output is shown in

Figure 14-20.

Figure 14-20. Updated registration output

Let’s also check the database for the user details stored with an

encrypted password, as shown in Figure 14-21.

Chapter 14 IntroduCtIon to LaraveL

271

Figure 14-21. Laravel DB encrypted password

 Summary
In this chapter, you went through the essential elements to get started with

Laravel. You explored some of the main Laravel features but in general

there are many more that you will find handy, along with a plethora of

packages that are present in the Composer repository. Always check

the documentation of Laravel to see if there is an existing component,

helper, or library that can helps you with your task before checking the

Composer libraries or creating a custom library. This will save you a lot of

time in terms of development and maintenance. Laravel is continuously

improving, so always follow Laravel news, email lists, and newsletters to

stay up to date.

In the next chapter, you will focus on another PHP framework named

Symfony, which is a very popular PHP framework already used by

thousands of web applications.

Chapter 14 IntroduCtIon to LaraveL

273

CHAPTER 15

Introduction
to Symfony
In the previous chapters, you learned how to use Lavarel, which is a web

application framework used with PHP. In this chapter, you will focus on

Symfony, which is a very popular PHP framework already used to develop

websites and applications, including a very nice number of reusable PHP

components.

This chapter consists of the following sections:

• Introduction to Symfony

• Installing Symfony

• Creating a Symfony Application

 Introduction to Symfony
Symfony is a full-stack framework built using a standard set of reusable

components. It’s a project where you can choose to use some of its

components or use the full stack.

It was created by Fabien Potencier in 2005 and is sponsored

by SensioLabs. In Symfony’s own words, “Symfony is a set of PHP

Components, a Web Application framework, a Philosophy, and a

Community - all working together in harmony” (https://symfony.com/

what-is-symfony)

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_15

https://symfony.com/what-is-symfony
https://symfony.com/what-is-symfony
https://doi.org/10.1007/978-1-4842-8082-9_15

274

Breaking down and getting deeper into this summary:

A PHP framework:

A framework, as you know, is a foundational template to build upon. It

consists of

 1. A toolbox

This is a set of reusable components in different contexts

of security,* validation, processing, session handling,

and more. These foundational elements make our

job easier.

 2. A process to do things

There are frameworks that are flexible enough to have

different structures, naming conventions, and control

flow as per your wishes, and there are frameworks that

have a conventional way of doing things. Symfony falls

into the latter category. It requires some initial learning

to understand these conventions but, once learned, they

make our job easier in terms of using existing components,

maintaining them, and easily creating similar structures

through automated tools like command-line tools.

A philosophy:

Symfony was created from the imagination of web creators at SensioLabs.

It was created by web creators for creators. These creators understand the

needs of developers creating web applications. Symfony is created under an

open source license, making it open to contributions, improvements, and

reuse by the open community, thus bringing in ideas from the best minds.

A community:

Symfony is supported and contributed to by the community for the

community. Symfony community support includes GitHub, Slack chat,

and SesioLabs.

Chapter 15 IntroduCtIon to Symfony

275

Features of Symfony: Symfony includes a number of key features that

distinguish it from other frameworks. It’s a very PHP-flexible framework, which

is very important for a PHP web developer. It’s easy to customize, including

full-stack and brick-by-brick. Finally, it is very stable and sustainable.

 1. PHP framework for web projects

Symfony helps you quickly create and maintain PHP web

applications. It also helps you avoid repetitive coding

tasks and manage code controlling and versioning.

 2. Ease of use

Symfony is very easy to use because it is very flexible

to any developer needs and is also very accessible. It

comes with a lot of documentation and is supported

by a strong community of professionals. It is also

very easy to use for beginners because it includes

embedded best practices.

 3. Stable

The release cadence of Symfony makes sure to

maintain compatibility between minor versions of all

releases and also provides three-year support for all

major Symfony versions. This enables a stable and

sustainable model that you can trust.

 4. Extensible

The integral central part of Symfony is made of

reusable components that can be used in other

projects or frameworks. This enables Symfony to

be very flexible and also extensible with changes to

the core behavior of the framework. Along with this,

Symfony leverages Composer to integrate the ever-

growing list of open source packages, thus enabling

developers to easily enrich its ecosystem.

Chapter 15 IntroduCtIon to Symfony

276

 5. Fast

Fast is something everyone desires in terms of

performance, but it is very hard to achieve. Symfony

was built from the start to be fast with an emphasis

on performance.

 6. Dependency injection

Dependency injection is a core concept. It allows you

to instantiate and use different components in the

runtime. Symfony uses it to provide a centralized way for

different objects to be initialized and provided in your

application, thus enabling simplicity and modularity.

 7. Modular elements

Symfony provides many out-of-the-box modular

components for managing security, sessions, ORM

features, forms, and a templating engine that can be

included and fitted into use with Symfony with very

little effort.

 8. Profiler tool

The Profiler tool is part of every web page and is

displayed at the bottom of all your pages. It provides

profile information in a variety of contexts, which are

discussed in coming sections. This is a very important

tool in every developer’s toolset. See Figure 15-1.

Figure 15-1. Profiler toolset

In Figure 15-1, you can see a toolbar with summary statistics. It’s the

development toolbar displayed by Symfony in debug mode and it contains

many details for each unique page. Figure 15-2 shows the controller route, API

response status, request time, memory usage, errors in form, and error logs.

Chapter 15 IntroduCtIon to Symfony

277

Figure 15-2. Profiler toolset components for status, time, memory
usage, errors, and logs

Other information includes

• Translation info

• Security info

• Twig/template calls

• Server info

• Symfony config info

Chapter 15 IntroduCtIon to Symfony

278

Clicking on any one of them lets you further delve into the details.

For example, Figure 15-3 shows that clicking on the request panel reveals

further details related to the request.

Figure 15-3. Request panel

On the left panel, you can also access further parts of the details related

to the current page you are trying to access.

 1. Command line tools

The Symfony cli and bin commands allow you to

create many starter templates like controllers, entity

models, and migrations without doing a deep dive

into them. In the following sections and coming

chapter, you will see how helpful they are, thus

making the development experience joyful.

 2. Documentation and support

The documentation of Symfony is unparalleled,

with all small details from Getting Started

guides, installation, and tutorials to API-specific

documentations. The open community is always

present to answer questions and provide support

Chapter 15 IntroduCtIon to Symfony

279

over the Stack Overflow platform and other forums.

If you are more of a bookworm and want to read in

detail, they have an online book (https://symfony.

com/book) for your reference. They also provide

Symfony training through certification coaching, the

SensioLabs University eLearning platform, and video

tutorials. Symfony also provides a certification, which

is widely valued and is a feat to achieve.

 Installing Symfony
There are a variety of ways by which Symfony can be installed. Refer to

https://symfony.com/doc/current/setup.html.

You will be following the simplest one to get you up and running.

Please make sure these prerequisites are installed before proceeding:

• PHP 8.1 or above

• PHP extensions: Ctype, iconv, PCRE, Session,

SimpleXML, and Tokenizer. These extensions come

installed by default with a PHP 8 installation.

• Composer tool to install Symfony and dependent

packages

Before you create a basic Symfony project in the next chapter, let’s

install the Symfony CLI, which is very helpful in many tasks. Based on

the operating system, there are different ways to install it; see https://

symfony.com/download.

In a Ubuntu/Debian system, it can be run using the following

commands:

curl -1sLf 'https://dl.cloudsmith.io/public/symfony/stable/

setup.deb.sh' | sudo -E bash

sudo apt install symfony-cli

Chapter 15 IntroduCtIon to Symfony

https://symfony.com/book
https://symfony.com/book
https://symfony.com/book
https://symfony.com/doc/current/setup.html
https://symfony.com/download
https://symfony.com/download

280

The outcome of your Symfony installation is shown in Figure 15-4.

Figure 15-4. Installation of Symfony

Once the Symfony CLI is installed, you can use it to verify if your

system meets all requirements for a Symfony application by running the

following command:

symfony check:requirements

You should get an output similar to Figure 15-5 if all is good to proceed.

Chapter 15 IntroduCtIon to Symfony

281

Figure 15-5. Symfony installation verification

Now that Symfony is installed, let’s create your first application.

 Creating a Symfony Application
To start a new project with the name of blog-app, run the following

command:

composer create-project symfony/skeleton:"6.1.*" basic-

starter- app

cd basic-starter-app

composer require webapp

Chapter 15 IntroduCtIon to Symfony

282

 Anatomy of a Basic Symfony Application

Every installed Symfony application comes with a very basic directory

structure with reusable components. The basic directory structure is

shown in Figure 15-6.

Figure 15-6. Symfony directory structure

Figure 15-6 shows the responsibilities of the respective subdirectories

with all the information. The basic Symfony application structure can be

found at the Symfony official web page at https://symfony.com/doc/

current/bundles/best_practices.html#directory-structure.

Once the project has been created, start it using the following

commands:

cd basic-starter-app

symfony server:start

Chapter 15 IntroduCtIon to Symfony

https://symfony.com/doc/current/bundles/best_practices.html#directory-structure
https://symfony.com/doc/current/bundles/best_practices.html#directory-structure

283

You can now access the app at http://localhost:8000, as shown in

Figure 15-7.

Figure 15-7. New app

This should confirm a valid installation and setup of Symfony.

 Summary
In this chapter, you learned about Symfony, a modern framework that can

be used by you to build websites. It provides a flexible core and an ever-

growing ecosystem of packages. You learned when to use this framework

and how to use it.

In the next chapter, you will learn how to develop a basic Symfony

application.

Chapter 15 IntroduCtIon to Symfony

285

CHAPTER 16

A Basic Symfony
Application
In the previous chapter, you installed and explored the Symfony PHP

framework. In this chapter, you will focus on developing a basic Symfony

application.

This chapter consists of the following sections.

• Creating a New Symfony Project

• Database Setup and Configuration

• Database Migrations

• Controller Route

• Registration View Form

• Storing User Data in a Database

 Creating a New Symfony Project
Since you installed Symfony in the previous chapter, let’s start by creating a

new project with the name of blog-app and running the following command:

composer create-project symfony/skeleton:"6.1.*" blog-app

cd blog-app

composer require webapp

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9_16

https://doi.org/10.1007/978-1-4842-8082-9_16

286

While installing the app-specific packages, it may ask if you need

Docker-specific configuration settings that will enable you to run your

Symfony application in a Dockerized environment. Please refer to the

Symfony setup Docker installation web page for more information:

https://symfony.com/doc/current/setup/docker.html.

Ignore it for now and say no. All information about the Symfony

directory structure is provided in Chapter 15.

The Symfony CLI provides a very handy command to check the

security of all the installed packages to ensure they are safe:

symfony check:security

The output showing if any Symfony package has any known

vulnerabilities is shown in Figure 16-1.

Figure 16-1. No known vulnerabilities

Once the project has been created, start it using the following

commands:

cd blog-app

symfony server:start

The output of starting the Symfony web server is shown in Figure 16-2.

Chapter 16 a BasiC symfony appliCation

https://symfony.com/doc/current/setup/docker.html

287

Figure 16-2. Symfony web server started

You can now access the app at http://localhost:8000, as shown in

Figure 16-3.

Chapter 16 a BasiC symfony appliCation

288

Figure 16-3. Symfony dashboard web page

This should confirm a valid installation and setup of Symfony.

The development toolbar is shown in Figure 16-4.

Figure 16-4. Symfony development toolbar

The toolbar shows summary statistics. For more information, read

Chapter 15.

 Database Setup and Configuration
You will learn about various components of Symfony as you build one

subpart of your blog application, which is user registration. Along the

way, you will see how Symfony makes it easy for you to build such an

application.

The core of any application is data, and you will need a database to

store data related to your users.

Chapter 16 a BasiC symfony appliCation

289

You will create the table in an incremental fashion as you proceed

through the different steps. In previous chapters, you created the database

and tables manually using the phpMyAdmin interface. This usually works

for a demo project, but while working on a production project it is usually

suggested to maintain databases and tables in migrations, which are stored

in files and can be committed to source code management systems like git.

This helps to have a repeatable data structure that can be readily used

by other team members to get quickly onboarded and set up the project

and also to create different environments for running a project like dev,

staging, and production. This has the added benefit of a versioned schema

of your database and tables to understand and maintain the history of

changes for auditing and other such purposes.

Before you start setting up the migration aspect of Symfony, you need

to configure the database configuration. The first step is to install the

Doctrine orm package, which is a set of PHP libraries mainly focused on

providing persistence services and functionalities.

$ composer require symfony/orm-pack

The output of the installation of Doctrine is shown in Figure 16-5.

Chapter 16 a BasiC symfony appliCation

290

Figure 16-5. Installation of the Doctrine package

Let’s install and enable this bundle in your application, as shown in

Figure 16-6.

$ composer require --dev symfony/maker-bundle

Chapter 16 a BasiC symfony appliCation

291

Figure 16-6. Install and enable this bundle in your application

Now update the database-relevant values inside the .env file.

Comment out the PostgreSQL URL and uncomment the MySQL URL line

above it. Then update

DATABASE_URL="mysql://app:!ChangeMe!@127.0.0.1:3306/app?serverV

ersion=8&charset=utf8mb4"

with

DATABASE_URL="mysql://root:password@127.0.0.1:3306/blog"

Now let’s create the database by running the following command:

$ php bin/console doctrine:database:create

The output of the database creation is shown in Figure 16-7.

Figure 16-7. Database creation

Chapter 16 a BasiC symfony appliCation

292

You can review phpMyAdmin to confirm it. See Figure 16-8.

Figure 16-8. phpMyAdmin tool to review and confirm changes

You will need an entity to represent your user object. Let’s create it by

running the following command:

$ php bin/console make:entity

This will ask the name of the entity, which in your case is User, and any

fields and their types to be defined.

The output of this command is shown in Figure 16-9.

Chapter 16 a BasiC symfony appliCation

293

Figure 16-9. Create User entity

Similarly, also add fields for email and password. Once done, simply

enter without entering any value. After making these changes, you’ll get a

success message, as shown in Figure 16-10.

Figure 16-10. User entity successfully created

Chapter 16 a BasiC symfony appliCation

294

Let’s verify the contents of the created file at src/Entity/User.php:

<?php

namespace App\Entity;

use App\Repository\UserRepository;

use Doctrine\ORM\Mapping as ORM;

#[ORM\Entity(repositoryClass: UserRepository::class)]

class User

{

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column]

 private ?int $id = null;

 #[ORM\Column(length: 255)]

 private ?string $name = null;

 #[ORM\Column(length: 255)]

 private ?string $email = null;

 #[ORM\Column(length: 255)]

 private ?string $password = null;

 public function getId(): ?int

 {

 return $this->id;

 }

 public function getName(): ?string

 {

 return $this->name;

 }

Chapter 16 a BasiC symfony appliCation

295

 public function setName(string $name): self

 {

 $this->name = $name;

 return $this;

 }

 public function getEmail(): ?string

 {

 return $this->email;

 }

 public function setEmail(string $email): self

 {

 $this->email = $email;

 return $this;

 }

 public function getPassword(): ?string

 {

 return $this->password;

 }

 public function setPassword(string $password): self

 {

 $this->password = $password;

 return $this;

 }

}

You’ve added all the defined columns into attributes for the User

attributes. Using this you can now create your migration to create the table

in the database. Run the following:

Chapter 16 a BasiC symfony appliCation

296

php bin/console make:migration

The output of this command is shown in Figure 16-11.

Figure 16-11. Migration successfully created

Let’s review the migration file created (in our case, it’s at migrations/

Version20220821091914.php):

<?php

declare(strict_types=1);

namespace DoctrineMigrations;

use Doctrine\DBAL\Schema\Schema;

use Doctrine\Migrations\AbstractMigration;

/**

 * Auto-generated Migration: Please modify to your needs!

 */

final class Version20220821091914 extends AbstractMigration

{

 public function getDescription(): string

 {

 return '';

 }

Chapter 16 a BasiC symfony appliCation

297

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify

it to your needs

 $this->addSql('CREATE TABLE user (id INT AUTO_

INCREMENT NOT NULL, name VARCHAR(255) NOT NULL, email

VARCHAR(255) NOT NULL, password VARCHAR(255) NOT NULL,

PRIMARY KEY(id)) DEFAULT CHARACTER SET utf8mb4 COLLATE

`utf8mb4_unicode_ci` ENGINE = InnoDB');

 $this->addSql('CREATE TABLE messenger_messages (id

BIGINT AUTO_INCREMENT NOT NULL, body LONGTEXT NOT NULL,

headers LONGTEXT NOT NULL, queue_name VARCHAR(190)

NOT NULL, created_at DATETIME NOT NULL, available_at

DATETIME NOT NULL, delivered_at DATETIME DEFAULT

NULL, INDEX IDX_75EA56E0FB7336F0 (queue_name),

INDEX IDX_75EA56E0E3BD61CE (available_at), INDEX

IDX_75EA56E016BA31DB (delivered_at), PRIMARY KEY(id))

DEFAULT CHARACTER SET utf8mb4 COLLATE `utf8mb4_unicode_

ci` ENGINE = InnoDB');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please

modify it to your needs

 $this->addSql('DROP TABLE user');

 $this->addSql('DROP TABLE messenger_messages');

 }

}

Chapter 16 a BasiC symfony appliCation

298

The file has up and down methods for migrate and rollback. It contains

your create table SQL. This is very handy as you do not need to create the

SQL statement yourself. Run this migration:

php bin/console doctrine:migrations:migrate

The output of this command is shown in Figure 16-12.

Figure 16-12. Database migration

Enter to proceed, as shown in Figure 16-13.

Figure 16-13. Database migration completed

Let’s check phpMyAdmin to review the creation of the user and the

migrations table, as shown in Figures 16-14 and 16-15.

Figure 16-14. phpMyAdmin tool to see the user migrations table

Chapter 16 a BasiC symfony appliCation

299

Figure 16-15. phpMyAdmin tool to review creation

The doctrine_migration_versions table is an internal Symfony-

specific table created to track the migration changes. Figure 16-16 shows

a quick look at the migrations table schema, which specifies the one

migration you did just now.

Figure 16-16. Migration table schema

With these changes, if you now start the Symfony server, you will see a

few logs related to connecting to the database and executing some system-

level queries.

Chapter 16 a BasiC symfony appliCation

300

Now, since the user table is set up, you can create the user registration

feature. There are three subfeatures of it functionality-wise that you

will build:

 1. Controller route to load the registration view form

and accept form submit requests

 2. Registration view form

 3. Storing user data in a database

 Controller Route
Let’s see now how to work with the Controller Route to load the

registration view form and accept form submit requests.

When you visit the http://localhost:8000/register URL, you get

the page shown in Figure 16-17, a 404 not found code, since you do not

have a route for this URL in your controller.

Figure 16-17. Register web page

Chapter 16 a BasiC symfony appliCation

301

If you see a "The metadata storage is not up to date, please run the

sync-metadata-storage command to fix this issue" message, please run the

following command to fix it:

$ php bin/console doctrine:migrations:sync-metadata-storage

Let’s create a controller to handle this route.

$ php bin/console make:controller UserController

The output of this command is shown in Figure 16-18.

Figure 16-18. UserController created

It created two files at

src/Controller/UserController.php

templates/user/index.html.twig

Let’s review the contents of src/Controller/UserController.php.

<?php

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\

AbstractController;

use Symfony\Component\HttpFoundation\Response;

Chapter 16 a BasiC symfony appliCation

302

use Symfony\Component\Routing\Annotation\Route;

class UserController extends AbstractController

{

 #[Route('/user', name: 'app_user')]

 public function index(): Response

 {

 return $this->render('user/index.html.twig', [

 'controller_name' => 'UserController',

]);

 }

}

Let’s modify the route from /user to /register and reload your

browser at http://localhost:8000/register.

class UserController extends AbstractController

{

 #[Route('/register', name: 'app_user')]

The output of the code is shown in Figure 16-19.

Figure 16-19. UserController code output

Inspecting the above code, if no GET or POST method is mentioned, by

default it's a GET request and /register is the relative URI path for the GET

request. When the controller intercepts a GET request to the /register

path, it will return the user/index.html.twig page through a call to the

render function.

Chapter 16 a BasiC symfony appliCation

303

You will develop the registration form later. For now, let’s create a

sample view page for registration success page and another route for

accepting the form submit request for registration submission.

See the registration success page at templates/user/registration_

success.html.twig. You have been successfully registered!

Update the GET route with the following code at src/Controller/

UserController.php to add a POST request handler:

....

use Symfony\Component\HttpFoundation\Request;

....

 #[Route('/register', name: 'app_user', methods: ['GET',

'POST'])]

 public function index(Request $request): Response

 {

 if ($request->isMethod('POST') {

 return $this->render('user/registration_success.

html.twig', [

 'controller_name' => 'UserController',

]);

 }

 ...

 // Previous code for GET response

 }

The above route now handles both GET and POST requests for the /

register route, and when a POST request is sent to the /register path, it

returns the registration_success page. You have left out the processing of

data and will complete it later.

Chapter 16 a BasiC symfony appliCation

304

To test this change, either open a terminal with a curl command

or use Postman. Postman is a UI interface to run API requests. Further

documentation related to installation and usage can be found at https://

learning.postman.com/docs/getting-started/introduction/.

The curl request command is the following:

curl --location --request POST 'http://localhost:8000/register'

The output of this command is shown in Figure 16-20.

Figure 16-20. Register command output

The Postman request is shown in Figure 16-21.

Figure 16-21. Register command output in the Postman tool

Chapter 16 a BasiC symfony appliCation

https://learning.postman.com/docs/getting-started/introduction/
https://learning.postman.com/docs/getting-started/introduction/

305

 Registration View Form
Symfony's twig template engine provides many built-in features to load,

loop, parse data, and use built-in functions as needed. You will learn how

to create a form that takes as input a few fields and submits them to your /

register POST route.

To add form capabilities, install the following package, which has this

feature, by running this command:

composer require symfony/form

Symfony allows you to initiate a form through a FormBuilder method

and associates the fields with the entity without you having to manage a lot

of validations explicitly.

The first change is to create an instance of your User entity inside the

index method.

...

use App\Entity\User;

...

 public function register(Request $request, ManagerRegistry

$doctrine): Response

 {

 $user = new User();

 ...

You will now build the form using the form builder method and bind it

to the $user instance.

 $form = $this->createFormBuilder($user)

// Bind $user to the $form instance

 // Associate entity name field to $form and show it as

a text type field

Chapter 16 a BasiC symfony appliCation

306

 ->add('name', TextType::class)

 // Associate entity email field to $form and show as an

email type field

 ->add('email', TextType::class)

 // Associate entity password field to $form and show as

a password type field

 ->add('password', PasswordType::class)

 // Finally add a submit button

 ->add('save', SubmitType::class, ['label' =>

'Register'])

 ->getForm();

Once the form builder instance is created, you need to associate and

pass $form onto the view layer, which is user/index.html.twig. This is

done by updating the index render call with the following:

 return $this->renderForm('user/index.html.twig', [

 'form' => $form,

]);

Start making changes to the view file at user/index.html.twig by

replacing all content with the following code to use the created form:

{% extends 'base.html.twig' %}

{% block title %}Registration Page!{% endblock %}

{% block body %}

 {{ form(form) }}

{% endblock %}

In this code, you have replaced the title and block body with a simple

call to form(form), which loads the passed-in form. This creates a basic

form HTML element with three fields and a csrf token for XSS protection,

as can be seen from the dev tools inspection shown in Figure 16-22.

Chapter 16 a BasiC symfony appliCation

307

Figure 16-22. Basic registration view form example

The final controller code should look as follows:

<?php

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\

AbstractController;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

use App\Entity\User;

use Symfony\Component\Form\Extension\Core\Type\TextType;

use Symfony\Component\Form\Extension\Core\Type\EmailType;

use Symfony\Component\Form\Extension\Core\Type\PasswordType;

use Symfony\Component\Form\Extension\Core\Type\SubmitType;

class UserController extends AbstractController

{

 #[Route('/register', name: 'app_user', methods: ['GET',

'POST'])]

 public function index(Request $request): Response

 {

 $user = new User();

 $form = $this->createFormBuilder($user)

 ->add('name', TextType::class)

Chapter 16 a BasiC symfony appliCation

308

 ->add('email', EmailType::class)

 ->add('password', PasswordType::class)

 ->add('save', SubmitType::class, ['label' =>

'Register'])

 ->getForm();

 if ($request->isMethod('POST')) {

 return $this->render('user/registration_success.

html.twig', [

 'controller_name' => 'UserController',

]);

 }

 return $this->renderForm('user/index.html.twig', [

 'form' => $form,

]);

 }

}

Try filling in the field details with some sample value and click the

Register button to see the form’s POST submit request in action.

On submitting, it will display the output shown in Figure 16-23.

Figure 16-23. Basic registration view form web page output

 Storing User Data in a Database
You have the view and controllers set up, but you are not doing anything

with the data. One of the important parts is to parse the POST request-

submitted data, validate it, and then save it to a database.

Chapter 16 a BasiC symfony appliCation

309

Now that you have been able to post data to a route end, you can parse

the different values. These values are available as part of the Request

object and can be used to associate with the form entity. Let’s see it in

practice. Make the following changes to the index method after $form is

instantiated:

...

 $form->handleRequest($request);

...

Now with above change, $form, which has been associated with your

User entity, has the submitted values filled into the respective fields and

can be used to fetch the User entity set to these values.

 $user = $form->getData();

Before you fetch the form data, you need to validate if all is well and

also you need to replace the isMethod function call check with a handy

method which the form provides to check if it was submitted to give you an

idea that this is a POST request:

 if ($form->isSubmitted() && $form->isValid()) {

 $user = $form->getData();

Now save the data to a database through Doctrine EntityManager.

Before saving it, you need to encrypt your password for security

purposes. Add the namespaces for ManagerRegistry and

UserPasswordHasherInterface and pass them as an argument to index,

so that Symfony through dependency injection can instantiate them and

pass them to the function.

Chapter 16 a BasiC symfony appliCation

310

use Doctrine\Persistence\ManagerRegistry;

use Symfony\Component\PasswordHasher\Hasher\

UserPasswordHasherInterface;

...

 public function index(

 Request $request,

 ManagerRegistry $doctrine,

 UserPasswordHasherInterface $passwordHasher,

): Response

 {

 ...

 $user->setPassword(

 $passwordHasher->hashPassword($user, $user-

>getPassword())

);

 $entityManager = $doctrine->getManager();

 $entityManager->persist($user);

 $entityManager->flush();

This will save the user details in the user table and return the

registration success template to the user. Notice you are using Hash helper

to one-way hash the password so that the password is stored in encrypted

format in the database for security purposes.

The whole code should now look like the following:

<?php

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\

AbstractController;

use Symfony\Component\HttpFoundation\Request;

Chapter 16 a BasiC symfony appliCation

311

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

use App\Entity\User;

use Symfony\Component\PasswordHasher\Hasher\

UserPasswordHasherInterface;

use Doctrine\Persistence\ManagerRegistry;

use Symfony\Component\Form\Extension\Core\Type\TextType;

use Symfony\Component\Form\Extension\Core\Type\EmailType;

use Symfony\Component\Form\Extension\Core\Type\PasswordType;

use Symfony\Component\Form\Extension\Core\Type\SubmitType;

class UserController extends AbstractController

{

 #[Route('/register', name: 'app_user', methods: ['GET',

'POST'])]

 public function index (

 Request $request,

 ManagerRegistry $doctrine,

 UserPasswordHasherInterface $passwordHasher

): Response

 {

 $user = new User();

 $form = $this->createFormBuilder($user)

 ->add('name', TextType::class)

 ->add('email', EmailType::class)

 ->add('password', PasswordType::class)

 ->add('save', SubmitType::class, ['label' =>

'Register'])

 ->getForm();

 $form->handleRequest($request);

Chapter 16 a BasiC symfony appliCation

312

 if ($form->isSubmitted() && $form->isValid()) {

 $user = $form->getData();

 $user->setPassword($passwordHasher-

>hashPassword($user, $user->getPassword()));

 $entityManager = $doctrine->getManager();

 $entityManager->persist($user);

 $entityManager->flush();

 return $this->render('user/registration_success.

html.twig', [

 'controller_name' => 'UserController',

]);

 }

 return $this->renderForm('user/index.html.twig', [

 'form' => $form,

]);

 }

}

Let’s also check the database to see the user details stored with an

encrypted password, as shown in Figure 16-24.

Figure 16-24. Checking the database with an encrypted password

Chapter 16 a BasiC symfony appliCation

313

 Summary
In this chapter, you went through the essential elements to start with

Symfony. You set up and configured a database and added data to it. You

also learned about some of major features of Symfony. However, there are

many more that you will find handy, along with a plethora of packages in

the Composer repository.

This is the last chapter of this book. You’ve learned the basics of PHP

version 8!

Chapter 16 a BasiC symfony appliCation

315

Index
A
Abstract classes, 33, 34, 39–41, 48
ACTUAL single quote, 53
API-specific documentations, 278
Application programming interface

(API), 26, 29, 30, 229, 235,
237, 239, 261, 276, 278, 304

app/Models/User.php, 268
Arbitrary cookie, 163
array_change_key_case(), 93
array_chunk(), 93, 94
array_column(), 94, 95
array_combine(), 95
array_count_values(), 95
array_diff(), 98, 99
array_diff_assoc(), 96
array_diff_key(), 96
array_diff_uassoc(), 97
array_diff_ukey(), 97, 98
array_fill(), 99, 100
array_fill_keys(), 99
array_filter(), 100, 101
ARRAY_FILTER_USE_BOTH, 100
ARRAY_FILTER_USE_KEY, 100
array_flip(), 101
Array functions

array(), 128, 129
array_change_key_case(), 93

array_chunk(), 93, 94
array_column(), 94, 95
array_combine(), 95
array_count_values(), 95
array_diff(), 98, 99
array_diff_assoc(), 96
array_diff_key(), 96
array_diff_uassoc(), 97
array_diff_ukey(), 97, 98
array_fill(), 99, 100
array_fill_keys(), 99
array_filter(), 100, 101
array_flip(), 101
array_intersect(), 104
array_intersect_assoc(), 101, 102
array_intersect_key(), 102
array_intersect_uassoc(), 102, 103
array_intersect_ukey(), 103, 104
array_is_list(), 104, 105
array_key(), 137
array_key_exists(), 105, 137
array_key_first(), 105
array_key_last(), 106
array_keys(), 106
array_map(), 107
array_merge(), 108, 109
array_merge_recursive(), 108
array_multisort(), 109

© Gunnard Engebreth, Satej Kumar Sahu 2023
G. Engebreth and S. K. Sahu, PHP 8 Basics, https://doi.org/10.1007/978-1-4842-8082-9

https://doi.org/10.1007/978-1-4842-8082-9

316

array_pad(), 110
array_pop(), 110, 111
array_product(), 111
array_push(), 111, 112
array_rand(), 112
array_reduce(), 113
array_replace(), 114, 115
array_replace_recursive(),

113, 114
array_reverse(), 115
array_search(), 115, 116
array_shift(), 116, 117
array_slice(), 117, 118
array_splice(), 118, 119
array_sum(), 120
array_udiff(), 122
array_udiff_assoc(), 120, 121
array_udiff_uassoc(), 121, 122
array_uintersect(), 124, 125
array_uintersect_assoc(), 123
array_uintersect_uassoc(),

123, 124
array_unique(), 125, 126
array_unshift(), 126
array_values(), 126, 127
array_walk(), 127, 128
array_walk_recursive(), 127
arsort(): bool, 129, 130
assort(): bool, 130, 131
compact(), 131
count(), 131, 132
current(), 132, 133
each(), 133

end(), 134
extract(), 134–136
krsort(): bool, 137, 138
ksort(): bool, 138, 139
list(): array, 139
natcasesort(), 139, 140
natsort(), 140
next(): mixed, 140, 141
overview, 91
prev(): mixed, 141
range(): array, 142
reset(): mixed, 142
rsort(): bool, 143
shuffle(), 144
shuffle(): bool, 144
sort(), 144, 145
uasort(), 145
uksort(), 146
uses, 91
usort(), 146

array_intersect(), 102–104
array_intersect_assoc(), 92,

101, 102
array_intersect_key(), 92, 102
array_intersect_uassoc(), 92,

102, 103
array_intersect_ukey(), 103, 104
array_is_list(), 104, 105
array_key(), 137
array_key_exists(), 92, 105, 137
array_key_first(), 105
array_key_last(), 106
array_keys(), 106
Array keys, 100

Array functions (cont.)

INDEX

317

array_map(), 107
array_merge(), 108, 109
array_merge_recursive(), 92, 108
array_multisort(), 92, 109
array_pad(), 92, 110
array_pop(), 92, 110, 111
array_product(), 92, 111
array_push(), 92, 111, 112
array_rand(), 92, 112
array_reduce(), 92, 113
array_replace(), 92, 114, 115
array_replace_recursive(), 92,

113, 114
array_reverse(), 92, 115
Arrays, 68–70, 147, 149, 165
array_search(), 92, 115, 116
array_shift(), 92, 116, 117
array_slice(), 92, 117, 118
array1_sort_flags, 109
array_splice(), 92, 118, 119
array_sum(), 92, 120
array_udiff(), 92, 122
array_udiff_assoc(), 92, 120, 121
array_udiff_uassoc(), 92, 121, 122
array_uintersect(), 92, 124, 125
array_uintersect_assoc(), 92, 123
array_uintersect_uassoc(), 92,

123, 124
array_unique(), 92, 125, 126
array_unshift(), 92, 126
array_values(), 92, 126, 127
array_walk(), 92, 127, 128
array_walk_recursive(), 92, 127
Artisan, 201

Associative arrays, 69, 83, 85–90,
94, 95, 102, 129, 130, 134,
135, 145, 147, 165, 198, 204

Authentication/authorization, 236
Authorization process, 233
Autoloading, 240

B
beginning-php8-and-mysql, 16
Betchy McCleaver, 161
Blogs and tutorials, 244
bookToAdd, 221, 228
bookToUpdate, 221, 227
Boolean type, 51
Bundle, 290, 291

C
callback function, 97, 98, 100–102,

104, 107, 113, 120–124
Catch, 171, 174, 175
Caught exception, 177
CHAR, 209, 212, 219
Character class, 186
checkMyNum() function, 173, 177
Classes, 33

constructors, 43, 44
definition, 35, 36
destructors, 43, 44
inheritance, 38, 39
namespaces, 46, 47
objects, 48
parent-child relationship, 48

INDEX

318

restrictions, 36
visibility, 37, 38, 48

ClassNotFoundException, 173
Symfony cli and bin

commands, 278
ClosedGeneratorException, 173
column_key, 94
Command-line interface (CLI),

215, 279, 280, 286
Command prompt, 13, 17, 215
Community-based open source

developers, 233
compact(), 92, 131
Complexity reduction, 34
Compose

command, 12, 13
container, 13
docker applications, 9
Docker Desktop, 10
features, 9

Composer, 237–239, 271, 275,
279, 313

Composer libraries, 271
composer require--dev symfony/

maker-bundle, 290
composer require laravelcollective/

html, 264
composer require symfony/

form, 305
composer require symfony/

orm-pack, 289
config/database.php file, 251
Constants, 42, 51

__construct() function, 71
construct() method, 41, 43
Constructors, 43, 44
contentPost.php, 28
Controller Route

creating controller, 301
curl command, 304
GET and POST requests, 303
GET or POST method, 302
metadata storage, 301
Postman request, 304
register command

output, 304
registration view form, 300

Cookies
creation, 161
delete, 162
inspect element, 161
modification, 162
purpose, 160
retrieving, 161
user identification, 160

count(), 131, 132
Create, read, update, and

delete (CRUD)
API, 229
database connection, 223
GET method, 221

deleteBook, 224
showAddBook, 226
showBooks, 226
showEditBook, 225

GET variables, 227
global variables, 222

Classes (cont.)

INDEX

319

header and navigation
creation, 222

if statement, 228
interaction, 221
POST method, 221

bookToAdd, 228
bookToUpdate, 227

website, 221
current(), 132, 133

D
Database (DB), 193

configuration, 289
creation, 291
libraries, 236
migration, 298
migrations directory, 255, 256
relevant values, 291
server, 194

Data protection, 34
Data structure, 34, 42, 68, 251, 289
DB_DATABASE, 253
“db.mysite.com”, 195
Decoupled patterns, 233
deleteBook function, 221, 224
delete_cookie.php, 162
DELETE method, 26, 30
Dependency injection, 236,

276, 309
Desc, 218
Destroying UserClass, 44
Destructors, 43, 44
Docker Applications folder, 7

Docker Desktop, 5–7, 10
Docker Desktop Installer.exe, 5
Docker Desktop for Windows, 5
Docker installation web page, 286
Docker installing

in Linux, 7–9
Mac OS, 6, 7
in Windows, 5, 6

Dockerized environment, 286
Doctrine EntityManager, 309
doctrine_migration_versions

table, 299
Doctrine package installation,

289, 290
Documentation, 173, 198, 242, 262,

271, 275, 278, 304
DOMException, 173
Double-quoted strings, 55, 56
DumpTruckClass, 24

E
each(), 92, 133
echo command, 17, 30
E_DEPRECATED error, 43
Eloquent, 268
Enable Hyper-V Windows

Features, 5
Encapsulation, 34, 48
Encrypted password, 312
end(), 92, 134
.env environment file, 252
ErrorException, 173
error_reporting(E_ALL), 18, 30

INDEX

320

Errors
ALL errors, 18
debugging, 19, 30
include_once, 21
ini_set(), 19
variables, 20, 21

Error types, 172
Error vs. exception, 172
E_WARNING level error, 112
execute method, 209
extract(), 134–136
Extraction flags, 135
Extracts variables, 135

F
FILTER_VALIDATE_EMAIL,

79, 183
filter_var(), 183
finally block, 175
first_cookie.php, 160
Flexibility programming

language, 171
Float type, 50, 52, 111, 120, 165
named form-action.php, 179
$form, 309
FormBuilder method, 305
Form::close, 266
Form::open, 266
Frameworks

advantages, 232–234
components, 237
composer, 238, 239
design patterns, 232

disadvantages, 234
layers

authentication/
authorization, 236

database libraries, 236
dependency injection, 236
MVC layer, 236
package management, 237
session management, 236
test framework, 237

MVC pattern, 235
PSR, 239–241
selection

active release/
development, 243

application/business use
case compatibility, 242

blogs/tutorials, 244
community support, 243
convention vs.

customization, 244
developer skill set, 242
documentation, 242
IDE support, 244
learning curve, 242
licenses, 243
test coverage, 244
testing, 243

software development life
cycle, 245

supporting structure, 232
types, 237, 238

Front-end GUI methods, 215
Full-fledged frameworks, 238

INDEX

321

FULLSTACK-based
frameworks, 238

Functionality-wise, 259, 300
Functions, 33–48

G
__get() method, 94
GET method, 26, 29, 31, 75, 76, 229
PHP CRUD GET method, 221
getMenuName() method, 169
Getters, 24, 166
git status, 253

H
Hash helper, 270, 310
header.php, 22
htmlspecialchars PHP function, 28
Hyper Text Transfer Protocol

(HTTP), 25–27, 75, 240

I, J
inc/ directory, 22
include_once function, 21, 31
Indexed array, 86, 94, 127, 137, 147
index_key, 94
Individual objects, 71, 165
Inheritance, 33, 38, 39, 44, 48
Instagram plugin, 29
Integer, 50–52, 64, 94, 97, 98, 103,

104, 107, 111, 118, 120–125,
129, 145, 146, 165, 208, 209

Interfaces, 240, 241
IntlException, 173
IOException, 173
__isset() methods, 94
is_string() function, 60, 66

K
Key, 87, 88
key_compare_func, 97, 98, 103,

104, 122, 124
krsort(), 92, 137, 138
ksort(), 92, 138, 139

L
Laravel DB table creation, 253
Laravel PGP framework

common tasks, 247
controller route, 259–262, 264
database migrations

command, 253
create and table options, 253
default template, 255
directory, 255
migrations table schema, 255
modification, 259
new migration file

creation, 256
output, 258, 259
phpMyAdmin, 255
reverse changes, 258
timestamp value, 253
user registration feature, 259

INDEX

322

users table schema, 256
database setup and

configuration, 250–253
installation, 248–250
MVC design pattern, 248
registration view form, 264–267
user data storing, 267–270
web application framework, 247

Laravel project directory
structure, 249

Laravel table schema, 256
Laravel web page, 250
Learning curve, 234, 242
Length, 117
list(), 92, 139
localhost:8000/chapter2/

vartest.php, 16

M
main2.php, 21
main3.php, 24
main.php file, 20, 22
ManagerRegistry, 309
Manipulations, 73
MessageClass::EXIT_MESSAGE, 42
Metacharacters, 185–186
Micro frameworks, 238
Migration creation, 295, 296
migrations table, 255, 298, 299
Migration table schema, 299
Model, View, and Controller

(MVC), 231, 235, 236, 248

Modifiers, 185, 205
modify_cookie.php, 162
Multidimensional arrays, 68, 88,

89, 91, 147
MVC layer, 236
MyISAM storage engine, 213
mysql adapter, 251
mysql connection, 251
MySQL, 2, 13, 14
MySQL 8.0, 199
MySQLi advantages, 198
MySQLi method, 194–197, 209
MySQL PDO parameter binding,

221, 229

N
Namespaces, 45–47, 240, 306
natcasesort(), 92, 139, 140
natsort(), 92, 130, 139, 140
New database creation

basic design, 214
directory, 217
Docker, 215, 216
MySQL, 215

commands, 216, 217
container, 216

mysql-db attribute, 216
show tables command, 219
structure, 214
tables, 217

newtest.php, 16
next(), 140, 141
Nginx, 3, 4, 13, 14

Laravel PGP framework (cont.)

INDEX

323

Nowdocs, 56
NULL, 71, 112
Numbers, 61, 79, 88, 105

O
Object-oriented programming

(OOP), 31
complexity reduction, 34
data protection, 34
encapsulation, 34
freedom and creativity, 35
inheritance, 34
polymorphism, 34

Objects, 31, 48, 71
assigning values, 25, 168
class change effects, 167
compound data type, 169
data manipulation, 168
definition, 22
functionality, 165
functions, 166
instantiation, 168
OOP concept, 165
sample, 166
user-defined classes, 165
calling var_dump, 24

Optional offset parameter, 64

P
Package management, 237
PATCH method, 26
PHP

arrays, 85, 92
frameworks, 241
libraries, 289
MySQL prepared

statements, 206
regular expressions, characters

sequence, 172
reserved words, 36
variables, 193

PHP 8, 43, 171
php bin/console

doctrine:database:
create, 291

php bin/console
doctrine:migrations:
migrate, 298

php bin/console make:controller
UserController, 301

php bin/console make:entity, 292
php bin/console

make:migration, 296
PHP Communication with MySQL

Docker dev environment, 194
mysql:8.0, 194
MySQLi method, 194–197
PDO version, 197, 198

PHP connection WITH database
addUser.php, 206
artisan, 201
ASC and DESC options, 205
conditions, 204
database variables, 207
data organization, 209
db.php file, 202

INDEX

324

execute method, 209
logic handling, 203
MySQL, 208, 209
mysqli constructor, 200
MySQLi, 204
ORDER query, 205
seeding, 201
SELECT query, 204, 206
users table, 208
DB_HOST, 200
mysqli object, 202, 207
query object, 208

PHP CRUD POST method, 221
PHP data objects (PDO), 159

advantages, 198
method, 197, 198, 209

PHP data type
category, 49
compound types

array, 68–70
objects, 71

data staorage, 49
scalar types

boolean, 51
defining, 50
float, 52
integer, 52
phrase, 51
string, 53–59

special types
NULL, 71
resources, 72

PHP exceptions
catch block, 175
checkMyNum(), 173
Finally block, 175
mechanism, 172, 175
runtime errors, 173
special class with functions, 177
throw, 174
throwable, 173
try block, 174

PHP form data handling, 83
PHP form validation

e-mail, 183
empty fields, 181
error messages, 180
files, 180
HTML web form, 178
letters and whitespace, 179, 181
regular expression function, 183
special characters, 183
values, 178

PHP Framework Interoperability
Group (PHP- FIG), 239

PHP fundamentals
errors, 18
objects, 22
variables, 15
verbs, 25

PHP GET form
basicForm.php, 81
functions.php, 80
value setting, 83
variables set, 82
name and email variables, 81

PHP connection WITH
database (cont.)

INDEX

325

PHP global $_POST, 28
phpMyAdmin

interface, 250, 289
model, 298
tool, 292, 298, 299

PHP POST form
code result, 78
developer’s mind, 78
email server, 80
filter_var function, 79
functions.php, 78
HTML elements, 79
HTML form, 76
method setting, 77
POST variables, 77
special characters, 79
user input, 77

PHP programming language
command line, 3
data organizing and delivery, 2
de facto programming

language, 1
development environment, 3
importance, 1, 2
scripts collection, 1
server-side scripting, 3

PHP. $_REQUEST, 75
PHP Standard

Recommendations (PSR)
autoloading, 240
coding styles, 241
goal/aim, 239
HTTP, 240
interfaces, 240

specification, 239
standards list, 240

PHP string functions
is_string(), 66
strlen(), 62
strpos(), 64, 65
str_replace(), 62, 63
strstr(), 67, 68
strtolower(), 65, 66
strtoupper(), 66
substr(), 60, 61
trim(), 63

Planning new database
CHAR datatype, 212
CHAR over VARCHAR, 212
database engine selection, 213
JOIN conditions, 212
MySQL EXISTS function, 213
no functions over indexed

columns, 212, 213
no provincial date designs, 212
ORDER BY clauses, 213
proper datatypes, 211
SELECT queries, 214

Polymorphism, 34, 40, 48
POST, 75

functionality, 27
method, 26, 27, 29, 31
request, 29
request-submitted data, 267
route, 264

Postman, 262, 304
Postman request, 263, 264
preg_match(), 183, 187, 188

INDEX

326

preg_match_all(), 187, 190
preg_replace(), 188, 190
preserve_keys, 118
prev(), 141
Private class, 38
Protected class, 38
Public class, 38
PUT method, 26

Q
Quantifiers, 187
Query complexity, 193

R
range(), 142
/register, 261
/register POST route, 264
register.blade.php, 261
RegisteredUser, 39
/register POST route, 305
Registration view form

controller code, 307
form builder instance, 306
FormBuilder method, 305
package installation, 305
POST submit request, 308
User entity, 305
viewing files, 306
XSS protection, 306

Regular expressions
arithmetic operators, 184
case-sensitive, 184

considerations, 184
functions, 187–190
group, 189
metacharacters, 185
modifiers, 185
quantifiers, 187, 189
square brackets, 186
syntax, 184
uses, 184

remove_session.php, 151
Replacement array, 118, 119
Request panel, 278
reset(), 142
Resources, 72
resources/views/ directory, 261
REST API-based frameworks, 237
REST API verb, 261
routes/web.php file, 260, 261,

267, 270
Row-level locking, 213
rsort(), 143

S
Sanitization, 25, 224
search_value parameter, 116
Security, 76, 78, 177, 232, 233, 239,

243, 264, 270, 274, 276, 277,
286, 309, 310

seedDB file, 204
seedDB.php, 152
Seeding, 201
Sequential integer keys, 107
Session management, 236

INDEX

327

Sessions
consistent naming, 157
database connections, 157
data removal, 151
declaration, 150
description, 149
input and sanitizing, 158
management, 236
remove_session.php, 159
seedDB.php, 152
session_start() function,

150, 156
session_test.php, 151
storing, 150
test data, 152
variables, 150, 151

session_start() function,
150, 156

Sessions vs. cookies, 149
session_test.php, 151
setcookie() function, 160
setlocale(), 138
setRegistrationNumber, 39
Setters, 24, 166
showAddBook function, 226
showBooks function, 226
showEditBook function, 225
shuffle(), 92, 144
sizeof(), 92, 144
Skittles, 22, 24
slogan method, 41
sort(), 144, 145
Sorting type flags, 126, 137,

138, 143

Source code management
systems, 250

SQLException, 173
SQL injection, 159
Square brackets, 186
src/Entity/User.php, 294
Stack Overflow platform, 279
Standards-based approach, 240
start_session() function, 151
Static data, 193
String, 17

complex syntax, 58
correct syntax, 58
definition, 53
double-quoted, 56
heredoc syntax, 56
identifier, 56
inside quotes, 53
literals, 53
nowdocs, 56
variables and escape

sequences, 53, 55
variables complexity, 57

strlen() function, 62
strpos() function, 64, 65
str_replace() function, 62, 63
strstr() function, 67, 68
strtolower() function, 65, 66
strtoupper() function, 66
Structural elements, 232
Structured Query Language (SQL),

193, 206, 228, 297
substr() function, 60, 61
Superglobals, 75, 83

INDEX

328

Symfony application
creation, 281
database setup and

configuration, 288–300
project creation, 285–288

symfony check:security, 286
Symfony CLI, 286
Symfony development toolbar, 288
Symfony directory structure, 282,

283, 286
Symfony framework

automated tools, 274
community support, 274
definition, 273
features

dependency injection, 276
easy to use, 275
extensible, 275
fast performance, 276
maintaining PHP web

applications, 275
modular components, 276
PHP-flexible framework, 275
stable and sustainable

model, 275
full-stack framework, 273
Profiler tool

command line tools, 278
components, 276, 277
description, 276
development toolbar, 276
documentation, 278
request panel, 278

SensioLabs creators, 274
tool box, 274
websites and applications

development, 273
Symfony installation

CLI, 279
operating system-based, 279
outcome, 280
prerequisites, 279
system requirements, 280
verification, 281

Symfony project creation
app-specific packages, 286
command, 285, 286
dashboard web page, 287, 288
development toolbar, 288
installed packages, 286
package vulnerabilities, 286

Symfony server, 299
symfony server:start, 286
Symfony web server, 286, 287

T
Table locking vs. row-level

locking, 213
Task automation, 233
tempalte3.php file, 28
Test framework, 237, 243
$this variable, 169
Throw, 171, 174
Throwable exceptions and

errors, 172

INDEX

329

Traits, 44, 45
trim() function, 63
Try, 171, 174
Two-dimensional arrays, 90

U
uasort(), 92, 145
UI components, 231
uksort(), 92, 146
Uncaught exception error, 173,

174, 176
Update methods, 30
UserClass(), 24, 25
User data storing, 308–310, 312
User entity creation, 292, 293
user/index.html.twig, 306
UserPasswordHasherInterface, 309
usort(), 92, 146

V
Validation, 25, 171–191, 267,

274, 305
value_compare_func, 120, 124, 125

VARCHAR, 209, 211, 212, 219
Var_dump() function, 24,

25, 27, 150
Variables, 15

data storage, 30
declaration command, 16
name, 17
rules, 15

vartest.php, 16, 18
Verbs, 26

W
Web form validation, 171, 177
WordPress config file, 76

X
XSS protection, 265, 306

Y, Z
YEAML files, 11
Yet Another Markup Language

(YAML), 9, 11, 14

INDEX

	Table of Contents
	About the Authors
	About the Contributor
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Why Use PHP?
	Using PHP
	Why PHP, Ngnix, and MySQL?
	Installing Docker
	Windows
	Mac OS
	Linux

	Installing Docker-Compose
	The Development Environment

	Summary

	Chapter 2: PHP Fundamentals
	Variables
	Using Errors As Tools
	Objects
	Verbs: GET and POST
	Summary

	Chapter 3: Functions, Classes, and Traits
	OOP
	Reviewing Class Definitions
	Class Visibility
	Public
	Protected
	Private

	A Closer Look at Class Inheritance
	Polymorphism and Abstract Classes
	Constants
	Constructs
	Traits
	Namespaces

	Summary

	Chapter 4: Data and Data Types
	PHP Data Types
	PHP Data Types: Scalar Types
	Boolean
	Integer
	Float
	String
	PHP String Functions
	substr()
	strlen()
	str_replace()
	trim()
	strpos()
	strtolower()
	strtoupper()
	is_string()
	strstr()

	PHP Data Types: Compound Types
	Array
	Object
	PHP Data Types: Special Types
	NULL
	resource
	Summary

	Chapter 5: Form Data
	PHP POST Form
	PHP GET Form
	Summary

	Chapter 6: Arrays
	PHP Indexed and Associative Arrays
	PHP Multidimensional Arrays
	PHP Array Functions
	array_change_key_case
	array_chunk
	array_column
	array_combine
	array_count_values
	array_diff_assoc
	array_diff_key
	array_diff_uassoc
	array_diff_ukey
	array_diff
	array_fill_keys
	array_fill
	array_filter
	array_flip
	array_intersect_assoc
	array_intersect_key
	array_intersect_uassoc
	array_intersect_ukey
	array_intersect
	array_is_list
	array_key_exists
	array_key_first
	array_key_last
	array_keys
	array_map
	array_merge_recursive
	array_merge
	array_multisort
	array_pad
	array_pop
	array_product
	array_push
	array_rand
	array_reduce
	array_replace_recursive
	array_replace
	array_reverse
	array_search
	array_shift
	array_slice
	array_splice
	array_sum
	array_udiff_assoc
	array_udiff_uassoc
	array_udiff
	array_uintersect_assoc
	array_uintersect_uassoc
	array_uintersect
	array_unique
	array_unshift
	array_values
	array_walk_recursive
	array_walk
	array
	arsort
	assort
	compact
	count
	current
	each
	end
	extract
	in_array
	key_exists
	key
	krsort
	ksort
	list
	natcasesort
	natsort
	next
	prev
	range
	reset
	rsort
	shuffle
	sizeof
	sort
	uasort
	uksort
	usort

	Summary

	Chapter 7: Sessions and Cookies
	PHP Sessions
	PHP Cookies
	Summary

	Chapter 8: Objects
	Output
	Summary

	Chapter 9: PHP Exceptions, Validation, and Regular Expressions
	PHP Exceptions
	PHP Form Validation
	PHP Regular Expressions
	Regular Expressions Modifiers
	Regular Expression Metacharacters
	Regular Expression Square Brackets
	Regular Expression Quantifiers
	Regular Expression Functions

	Summary

	Chapter 10: PHP and MySQL Working Together
	PHP Communication with MySQL
	PHP Communication with the MySQLi Method
	PHP Communication with the PDO Method

	MySQLi Advantages
	PDO Advantages
	PHP Connection to a Database
	Summary

	Chapter 11: Data
	Planning for a New Database
	Creation of a New Database
	Summary

	Chapter 12: Website with a DB
	Summary

	Chapter 13: Introduction to Frameworks
	Introduction to Frameworks
	Pros and Cons of Frameworks
	Pros of Using Frameworks
	Cons of Using Frameworks

	MVC Pattern
	Different Layers of a Framework
	Different Types of Frameworks
	Role of Composer

	Introduction of PHP Standard Recommendation (PSR)
	PHP Frameworks
	Choosing a Framework

	Summary

	Chapter 14: Introduction to Laravel
	Introduction to Laravel
	Installing Laravel
	Database Setup and Configuration
	Database Migrations
	Controller Route

	Registration View Form
	Storing User Data in a Database

	Summary

	Chapter 15: Introduction to Symfony
	Introduction to Symfony
	Installing Symfony
	Creating a Symfony Application
	Anatomy of a Basic Symfony Application

	Summary

	Chapter 16: A Basic Symfony Application
	Creating a New Symfony Project
	Database Setup and Configuration
	Controller Route
	Registration View Form
	Storing User Data in a Database
	Summary

	Index

