

The Absolute
Beginner’s Guide to
HTML and CSS

A Step-by-Step Guide
with Examples and
Lab Exercises

Kevin Wilson

Apress’

The Absolute Beginner’s Guide to HTML and CSS: A Step-by-Step Guide
with Examples and Lab Exercises

Kevin Wilson
WIDNES, UK

ISBN-13 (pbk): 978-1-4842-9249-5 ISBN-13 (electronic): 978-1-4842-9250-1
https://doi.org/10.1007/978-1-4842-9250-1

Copyright © 2023 by Kevin Wilson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar
Cover image designed by vectorjuice on Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via https://github.com/Apress.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9250-1

Table of Contents

About the AUthOrccscemmssmnmssnsmmsssnmmsssssssssssssssnsssssnsssssnnssssnnssssnnsns ix
About the Technical REVIEWETccssesssssnsssssnsssssnsssssnsssssnsssssnsssssanssns xi
Introduction........ccccmiimmmmnmnmnnesnn s —————— xiii
Chapter 1: Getting Started.........ccccuscmmnsmmmmssnsmsssnnmsssssmsssasmsssssssssssssssnns 1
Linking Pages TOGETNETccvevrrerierererersere s s ses e saessssessessesnes 1
Where Are Web Pages StOred?.........ccvevevvnnierennnensensesessssessesessssessessesssssssessenes 3
WRAL IS @ URL?......oeeeeccrerens e sn s sns s sne e 3
INAEX PAQGES.....coviirererieiir sttt p e e 5
HTIVILG ...t e bbbt 7
WhEL IS CSS7....eieieerrrere et 7

0 0 1 T OO 9
Installing Our WED SEIVENcccveverirrerere s sere s ses s sssses s saesessessesnens 9
Starting the WED SEIVET......covvvvvierevr s ses e ss e sse s ssessssessesees 13
Saving YOUr Web PagES.......cccccerecerinererencrinse s e sessesesss e sessesessesessssesenns 15
(0 Tezz |1 T 11 T 15
Using @aWeb HOSL.........ccoonc s 16
Development Tools and Code Editors..........cccovvvrvrinennsnsnennsssese e sessesennens 19
(12100 =T 3 o S 23
LD EXBICISES ...vieirruererreserrserssess s ss s e sn s 28
1] 4= O 29

iii

https://doi.org/10.1007/978-1-4842-9250-1_1
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec3
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec4
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec5
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec6
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec7
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec8
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec9
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec10
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec11
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec12
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec13
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec14
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec16
https://doi.org/10.1007/978-1-4842-9250-1_1#Sec15

TABLE OF CONTENTS

Chapter 2: Introduction to HTML..........ccocccmmmmsssnnnnmmssssnsnmsssssssssssssnnnns 31
Structure of an HTML Page........ccccvrevirrccrnccrne et ses e sss e 31
HTML Element STrUCIUNEc..vceeeeerecrrce e 34
Metadata........c.cocvverererere s ———— 37
LD EXBICISES ...vueirrueserreserrserssess s se s sn s sn s s 38
1] 4= O 39

Chapter 3: Getting Started with HTMLccoccccmnnnnnennmnsssssnnsnssnnnns 41
LT) 42
Elements for Formatting Text..........ccovivvninininnsni e 44

HEAAINGS.... .o e e e e s 46

Paragraphs ... 47

3 10] o = T 47

1221 =« T 48
Page Background COlOr.........c.cccvvrininnsininess s ssesessessesnens 51
= (00 o] TSRS 53
FONES . e 54
HTML ENTItIESecccceresicc e s snsssss 55
D00 o T oI U0 LSS 56
Understanding Image DimenSions...........cccccuvvvinnnnniesnsessesesssessesesssssssessessens 58
Image AlIgNMENT ... e ene e 59
Background IMAgE.........cvveererrererenerrnsesessesssesessssessssesesssssssssesessssssssssssssessssesenns 60
Adding TADIES ... ————— 63
AUING LINKS «.cveeeerereseeserese s sessesessesessesse s ssssessessesssssssessessessssessessesssssssessees 64
USing IMAges AS LINKSc.ccucvverininien st sss e s sesssssse e sessesssssnesaesns 67
Preserve FOrmattingccccvevnnniniennsnsnsess s sse s snens 69

iv

https://doi.org/10.1007/978-1-4842-9250-1_2
https://doi.org/10.1007/978-1-4842-9250-1_2#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_2#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_2#Sec3
https://doi.org/10.1007/978-1-4842-9250-1_2#Sec4
https://doi.org/10.1007/978-1-4842-9250-1_2#Sec5
https://doi.org/10.1007/978-1-4842-9250-1_3
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec3
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec4
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec5
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec6
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec7
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec8
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec9
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec10
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec11
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec12
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec13
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec14
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec15
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec16
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec17
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec18

TABLE OF CONTENTS

X0 o T oI T (S 69
UNOrdered LiSt ... 69
Ordered LiSt........ccocvrrmnisisisissssse s s 70

Structuring Your Web Pagecccvrevrrcernccnnc e e 70

LD EXBICISEScueerueerreereeerenese e sse e sessese e e se s s s e ses e s 72

SUMMANY....erieeersisere s s se s e e s e e e nee e nns 73

Chapter 4: Cascading Style Sheets.......ccccirrmmmmmmsssmnsnnnnnsmmsssssssssnnns 75

EXternal CSS FileSccoucriveriesirenerse s ss s s 76

T 1 VO RS 78
Element TYPE SEIECION.......ovvvvrere e 80
Class SEIECION........ccvrrririrerrr s 80
ID SEIBCIONeivicccririr s 81
UNIVErsal SEIECION ..o s 82
Grouping SEIECIOISccvueviererierere s s s sa e e 82

81T =D 83

SPECITYING COIOTSeveerirererrecerte sttt 85
KEYWOIT.... ..o s s e e 85
HEX VAIUE ...t 86
RGB VAIUE ... sesns s s es 86

Understanding Measurement UNits...........ccovoeorrrcrnscnnenenesesensesesesese e 87

Padding, Margins, and BOrdErs..........ccccvvererenmrresmsensessssssssssesessesesssessssesessesenns 88

LAY OULS. ...cereereeensese e s s e s e s r e s e s re e e e nnenne s 90
FIBXDOX ettt e)

LA EXEICISES.....ceererrircnsisesessssse s s 124

SUMMAIY . veiteitrerere e sere e s e s e e s ssesae e s e s aesaese e e saesaesae e s e saesaesseenaesaens 125

https://doi.org/10.1007/978-1-4842-9250-1_3#Sec19
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec20
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec21
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec22
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec23
https://doi.org/10.1007/978-1-4842-9250-1_3#Sec24
https://doi.org/10.1007/978-1-4842-9250-1_4
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec3
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec4
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec5
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec6
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec7
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec8
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec9
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec10
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec11
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec12
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec13
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec14
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec15
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec16
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec21
https://doi.org/10.1007/978-1-4842-9250-1_4#Sec22

TABLE OF CONTENTS

Chapter 5: Special Effectscccrnmsmmmmmmsssssnnmsssssnnsmssssssssssssssssnsssssnns 127
=Y =31 T SRR 127
Rounded IMage COIMErS ... s 129
21T 0] SR 130
LCT 01T 11 TSSOSO 131
LA EXEICISES.....ceererrirencirissssssssese s s 133
SUMMAIY.c.veiteitrrerereree e sre s e s e e s s s sa s e s e s aesaese e e saesaesae e s e saesaesseenaesaens 134

Chapter 6: Multimedia........ccoseerrrmssnnnnmssssssnsmsssssnnsssssssnssessssnnsssssssnns 135
AdAING VIABO ...t s 135
AdAING AUAIO ... e e 139
Adding IMAgE MaPSccceverrrerrrerere s ses s sesnnnens 140
LD EXBICISES ...viuerireerriesrssesessese s s s s s s sn s s ss s nsans 145
SUMMAIY.c..eitetrerere s serse e s s e s s e e s s sae e e e s e e s sae e s e saesae e e e nannnens 146

Chapter 7: HTML FOrmScccuuumimmmmmmssssssssmmsssssssssssssssssssssssssssssssssnnnss 147
AdAING FOMS.....oiiiieirirsrr s s e s e e s se e s ae s s 148

INPUE TYPES .. 148
LADEIS ... ———— 151
SUDMIL BULON......cciirirrrreccre s 152
BUIldiNg @ FOrM.......coiirrccsir et 152
SEYIING @ FOMM...eeeeee e 153
Processing the FOrm Data...........ccccevrenmnnnesnsmsnsesessse s sessesessssessnnes 156
Configure the Web Server to Execute Scripts.........ccoovvvrrenrnnnnsenenenennnne 156
Executing the SCHpt.......ccvciiicrnrsre e s 162
Submission Method ... 164
O OO 164
POST.....cce e ————————— 165

https://doi.org/10.1007/978-1-4842-9250-1_5
https://doi.org/10.1007/978-1-4842-9250-1_5#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_5#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_5#Sec3
https://doi.org/10.1007/978-1-4842-9250-1_5#Sec4
https://doi.org/10.1007/978-1-4842-9250-1_5#Sec5
https://doi.org/10.1007/978-1-4842-9250-1_5#Sec6
https://doi.org/10.1007/978-1-4842-9250-1_6
https://doi.org/10.1007/978-1-4842-9250-1_6#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_6#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_6#Sec3
https://doi.org/10.1007/978-1-4842-9250-1_6#Sec4
https://doi.org/10.1007/978-1-4842-9250-1_6#Sec5
https://doi.org/10.1007/978-1-4842-9250-1_7
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec8
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec9
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec10
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec11
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec12
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec13
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec14
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec15
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec16
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec17

TABLE OF CONTENTS

LD EXEICISEScocevecrecrrirere st s e 166
11T 1117 S 167
Chapter 8: Introduction to JavaScriptc..ccccuremmnsmmmsssnssssssnsssssnnnas 169
JAVASCHIPE SYNTAX ... 172
SEALEMENTS ... e 172
30T 172

(0 T3)T 172
G0 0 TS 173
0011 T) 173

FirSt Programooccvveennisesssesssesess s s e s sesssssssssessnnes 174

I 10 I8 (=T 1] 175
SUMMAIY.c.ueititrierere st e s e s s a e e s s sae e e e s e s aesae e s e s aesae e e e nannaees 179
Chapter 9: Content Management Systemsccccnnnseemnnnsssannnnssssnns 181
Set Up WOrdPress 0N QUE SEIVETcvvvvevvereressesseressessssessessesssssssessessessssessessens 183
Web Development FrameWOrKSccucvernnnsneniess s ssssssessesesssssssessesnes 199
SUMIMANY....eeeerercreree e s e e e e nre e re e e e e 200
Appendix A: HTML Element Reference........ccccccvvrmssssssssssnsssssssssssssnnns 203
Appendix B: CSS Selector Reference.......cc.uccummmssssnssmssssssnsssssssssnsssns 215
Appendix C: CSS Color CoUesccurussmmnrrmssssnnsssssssnsssssssssnsssssssnnssssss 227
INA@X . iiiiiisnnnmnnnnnrenssssssssnnnnnnsssssssssssnnsnnnseesssssssnnnnnnnnsessssssnnnnnnnnnnessssnnn 235

vii

https://doi.org/10.1007/978-1-4842-9250-1_7#Sec18
https://doi.org/10.1007/978-1-4842-9250-1_7#Sec19
https://doi.org/10.1007/978-1-4842-9250-1_8
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec3
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec4
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec5
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec6
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec7
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec8
https://doi.org/10.1007/978-1-4842-9250-1_8#Sec9
https://doi.org/10.1007/978-1-4842-9250-1_9
https://doi.org/10.1007/978-1-4842-9250-1_9#Sec1
https://doi.org/10.1007/978-1-4842-9250-1_9#Sec2
https://doi.org/10.1007/978-1-4842-9250-1_9#Sec3

About the Author

With over 20 years of experience in the computer industry, Kevin Wilson
has made a career out of technology and is showing others how to use it.
After earning a master’s degree in computer science, software engineering,
and multimedia systems, Kevin has held various positions in the IT
industry including graphic and web design, digital film and photography,
programming and software engineering, developing and managing
corporate networks, building computer systems, and IT support. He
currently teaches computer science at college and works as an IT trainer in
England while researching for his Ph.D.

ix

About the Technical Reviewer

Jonathon Simpson is a product owner and engineer living in the UK. He
graduated from UCL in 2015. With many years of experience, he has
developed and run many successful projects both independently and in
large companies. He produces a popular software engineering blog called
fjolt.com and posts regular newsletters about the latest developments and
trends in JavaScript and web development.

Introduction

The aim of this book is to provide a first course in the use of HTML
and CSS.

It provides a foundation for those who wish to develop their own
websites, and because the book is intended to be a primer, it allows the
beginner to become comfortable with basic HTML and CSS coding.

As itis a first course, no previous experience of computer
programming is assumed.

Throughout the book, we’ll explore HTML and CSS with worked
examples and lab exercises for you to complete yourself. We'll also
introduce JavaScript and how it can be used to add interactivity to a
website, as well as using content management systems such as WordPress.
For this purpose, we've included all the source code for this book in
the following repository: https://github.com/Apress/The-Absolute-
Beginner-s-Guide-to-HTML-and-CSS

xiii

https://github.com/Apress/The-Absolute-Beginner-s-Guide-to-HTML-and-CSS
https://github.com/Apress/The-Absolute-Beginner-s-Guide-to-HTML-and-CSS

CHAPTER 1

Getting Started

Originally developed in the early 1990s by Tim Berners-Lee, HTML stands
for HyperText Markup Language and is a language used to lay out and
format documents for the World Wide Web that are designed to be displayed
in a web browser. In other words, the HTML code describes the structure of
aweb page. HTML can be used with other technologies such as Cascading
Style Sheets (CSS) to style and format the document and scripting languages
such as JavaScript to provide functionality and interactive elements.

Basic knowledge of HTML is essential for students and anyone working
in web development. This will help you

¢ Understand the World Wide Web.

o Create and customize your own websites: You can
create a website or customize an existing web template
if you know HTML.

e Become a web developer: If you want to start a career
as a professional web developer, HTML and CSS are
essential skills.

Linking Pages Together

Web pages are all linked together using clickable text or images, called
hyperlinks. This is known as hypertext and enables you to create multiple
pages on a website that allow the user to browse through the pages by
clicking these hyperlinks.

© Kevin Wilson 2023 1

K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/ 10.1007/978-1-4842-9250-1_1

https://doi.org/10.1007/978-1-4842-9250-1_1#DOI

CHAPTER 1 GETTING STARTED

Hyperlinks can also link to pages and resources hosted on other
websites.

The links can be embedded into the body of a paragraph as an
underlined word or as an image or icon. This is called hypertext.

As you can see in Figure 1-1, on the left, the hyperlinks appear in
light blue text. When you click the link, the browser will take you to the
linked page.

Figure 1-1. Hypertext Document

CHAPTER 1 GETTING STARTED

Where Are Web Pages Stored?

A website and its pages are stored or hosted on a web server. Web servers
are computers usually running Windows Server or, more commonly, some
flavor of the Linux operating system such as CentOS. Running on these
machines is a piece of software called a web server. This is usually Apache,
IIS, or NGINX (pronounced “Engine X”).

What Is a URL?

Each website on the World Wide Web has an address called a URL
(Figure 1-2) or Uniform Resource Locator.

Figure 1-2. Anatomy of a URL

The URL itself can be broken down into its basic elements. Let’s take a
closer look at an example:

https://www.ellumitechacademy.com
The "www.ellumitechacademy.com" part is called the hostname.

Let’s break the URL down into its different parts.

https:// stands for hypertext transfer protocol secured and is the
protocol the web browser is using to connect to the server. This is known
as the scheme.

You might find other schemes such as ftp:// if you are connecting to an
FTP site.

CHAPTER 1 GETTING STARTED

www is the name of the server hosting the service or subdomain, in
this case www for the World Wide Web, and usually points to your public_
html or htdocs directory on the web server.

This can also be another service such as an email server:
mail.ellumitechacademy.com
or perhaps a subdomain for the website’s online store:
shop.ellumitechacademy.com

ellumitechacademy is the domain name or organization’s name and
is unique to that organization. This is known as a second-level domain.

.com is the type of site. It can be .co.x for country-specific companies
(e.g., .co.uk), .org for nonprofit organizations, or .gov for government
organizations. These are known as top-level domain names and are
designed to identify the types of companies represented on the Web.

After the domain name, you might find a forward slash, then another
name. This is known as a subdirectory or path. For example, to access the
courses directory on the web server, we'd use

www.ellumitechacademy.com/couxses
or for an html directory inside courses, we’d use
www.ellumitechacademy.com/couxrses/html

If we want to access a web page or a file for download, we add the path
and file name of the file or document:

www.ellumitechacademy.com/aboutus.html
or a file in the downloads directory:

www.ellumitechacademy.com/downloads/menu.pdf

CHAPTER 1 GETTING STARTED

Of course, these files and directories would need to exist in the public_
html or htdocs directory on the web server (Figure 1-3). Here, we can see
the courses and downloads directories on the server.

Figure 1-3. Directory Structure on a Web Server

Index Pages

Websites are built inside directories on a web server. The index file is the
default page displayed if no other page is specified when a visitor enters
the URL into their web browser. This index file could be index.html, index.
php, or index.py depending on which language you're using to develop
your site. For now, we'll use index.html.

In our example, we have a directory structure on our web server
(Figure 1-4).

CHAPTER 1 GETTING STARTED

Figure 1-4. Directory Structure

Inside the directory, you'd have an index file that is displayed by
default when the user navigates to the directory in their browser. If the user

types in

www.ellumitechacademy.com/courses

the web server will look in the directory for the index.html file:
www.ellumitechacademy.com/courses/index.html

If the index.html file is missing, the web server will attempt to display a
list of files, or you'll see an error message (Figure 1-5).

Figure 1-5. Web Server Directory Listing

CHAPTER 1 GETTING STARTED

HTML5

HTMLS5 brings device independence, meaning websites can be developed
for all different types of platforms, from PCs to smartphones, without the
need to endlessly install plugins on your browser or develop multiple
versions of a website for mobile devices as we can see in Figure 1-6.

Figure 1-6. Website on Different Devices

HTMLS5 also introduces some new tags to handle page structure such
as <section>, <head>, <nav>, <aside>, and <footer> and some tags to
handle media such as <audio> or <video>.

We'll take a look at some of the new HTMLS5 features later in this guide.

What Is CSS?

Cascading Style Sheets (CSS) are used to define and customize the styles
and layout for your web pages. This means you can create style sheets to
alter the design, layout, and responsiveness to different screen sizes on
various devices from computers to smartphones.

CHAPTER 1 GETTING STARTED

In CSS, selectors declare which part of the HTML markup a style
applies. The selector could be an H1 heading style, a body tag, or a
paragraph tag.

So what you'll see is a selector, say H1, and inside the curly braces,
you'll see a declaration block where you declare your styles for that
selector (Figure 1-7).

Figure 1-7. Anatomy of a CSS Selector

You can either add your CSS declarations to the <head> section of
your HTML document between the <style>...</style> tags or add your CSS
declarations to a separate style.css file and add a link in the <head> section
of your HTML document using

<link rel="stylesheet" type="text/css" href="styles.css">

This is a better way since it allows you to change the styles in one place
rather than in each HTML page you create.
We'll take a closer look at CSS later in Chapter 4 of this book.

https://doi.org/10.1007/978-1-4842-9250-1_4

CHAPTER 1 GETTING STARTED

Hosting

For hosting your website, you have three options:

e A dedicated hosting service, where a server located
at your school or is provided for your use. This can be
used for development and in some cases a live website
depending on the service.

» Setting up a personalized web server on your
own computer: This is only good for testing and
development and is not intended to host a live website.

e Managed hosting service or web host, which is a service
managed by a web hosting provider: This is what
you would use to host a live website that is available
publicly.

Installing Our Web Server

In this guide, we are going to use a personal web server. This will help you
set up a development environment you can use on your computer to test
your website without having it accessible on the Internet.

Abyss turns your computer in a full-featured web server. To download
Abyss Web Server, open a web browser and navigate to

aprelium.com/downloads

On the left-hand side, click “Free Download” (Figure 1-8).

CHAPTER 1 GETTING STARTED

Figure 1-8. Download Web Page

Select the Windows version (or the Mac version if you're using a Mac)
(Figure 1-9).

Figure 1-9. Download Abyss Web Server Page

Open your downloads directory, then double-click the software
package you just downloaded. Click “Agree” on the license
agreement page.

Deselect components you do not want to install. Select all
components, except “Abyss Web Server (32-bit).” “Start Menu Shortcuts”
enables adding Abyss Web Server shortcuts in the Start Menu, and
“Documentation” installs help files (Figure 1-10).

10

CHAPTER 1 GETTING STARTED

Figure 1-10. Web Server Installation

Choose a directory where you want to install Abyss Web Server files.
Click “Install” (Figure 1-11).

Figure 1-11. Choose a Directory to Install the Web Server

On your start menu, click “Abyss Web Server X1” (Figure 1-12).

11

CHAPTER 1 GETTING STARTED

Figure 1-12. Start Menu

The configuration wizard will appear in your web browser
(Figure 1-13). Select your language.

Figure 1-13. Configuration Wizard

Create your login details - don’t forget these. Enter a login username
(e.g., admin) and a password (Figure 1-14). Click OK when you’re done.

Figure 1-14. Login Details

12

CHAPTER 1 GETTING STARTED

When the browser asks you for a username and password, enter the
username and password you chose earlier (Figure 1-15).

Figure 1-15. Enter Your Credentials

Starting the Web Server

We've configured the server so it doesn’t automatically start when you log
in to Windows, as this could be a security risk. It is best to only run the web
server when you need it to test your website.

Once the web server has been installed, you'll need to start the web
server before you can do anything.

To start the server, open the start menu, then click “Abyss Web Server
X1” (Figure 1-16).

13

CHAPTER 1 GETTING STARTED

Figure 1-16. Start Abyss Web Server

The server will appear in the system area on the bottom right-hand
side (Figure 1-17).

Figure 1-17. Abyss Web Server in the System Area

14

CHAPTER 1 GETTING STARTED

Saving Your Web Pages

You can save your web pages to Abyss Web Server on your local machine,
or you can use FTP to upload them to a web host if you have that facility
setup. In this guide, we’ll save our pages to Abyss Web Server on the local

machine.

Local Machine

If you have installed Abyss Web Server on your local machine, any pages
you develop on your website will be saved into the following folder:

c:\abyss web server\htdocs

You'll find the folder in File Explorer on the C drive (Figure 1-18).

Figure 1-18. Abyss Web Server Pages

15

CHAPTER 1 GETTING STARTED

Once the server is running, you'll be able to access your web page from
a web browser by navigating to

http://localhost/pagename.html
or
http://127.0.0.1/pagename.html

pagename.html is the name of the HTML document you want to view.
This could be

http://localhost/index.html
http://localhost/store.html

Using a Web Host

If you are using a web host somewhere else, you'll need to use an FTP
client to connect to the server to upload your files. You'll need to obtain
your username and password and the address of the web server from your
hosting provider.

A good FTP client to use if you're using Windows or Mac is FileZilla.
You can download this at the following website:

filezilla-project.org/download.php

Once downloaded and installed on your machine, start the program.
From the “File” menu, select “Site Manager” (Figure 1-19).

16

CHAPTER 1 GETTING STARTED

Figure 1-19. Site Manager Using FileZilla

Click “New site,” then enter the FTP hostname or IP address, then add
your username and password (Figure 1-20).

Figure 1-20. FTP and Login Process

Click connect to begin.
Once a connection to the server is established, you'll land on the

home screen.

17

CHAPTER 1 GETTING STARTED

In the pane on the left-hand side, navigate to the folder where you save
all your HTML files into. In the pane on the right-hand side, navigate to the
htdocs or public_html folder on the web server (Figure 1-21).

Figure 1-21. Files on the Local Computer and Web Server

To upload files, select them in the left-hand pane, then right-click
the selection. Select “Upload” from the pop-up menu (Figure 1-22). To
download files, select them in the right-hand pane, then right-click the
selection. Select “Download” from the pop-up menu.

18

CHAPTER 1 GETTING STARTED

Figure 1-22. Upload and Download Files

For more detailed information on how to use FileZilla, go here:

wiki.filezilla-project.org/Documentation

Development Tools and Code Editors

Finding the right tool is a matter of personal preference and depends on
the type of application you are going to develop. There are many different
tools available. You could use an IDE which is an integrated development
environment such as Adobe Dreamweaver, Brackets, or VS Code.

An IDE is a software application that consists of a source code editor
with syntax highlighting to make code easier to read, as well as built-in
tools to help you develop your code and a debugger to help you find errors.
These are all integrated into one application, hence the name integrated
development environment.

In Figure 1-23, we see Dreamweaver. You can see that it has a live
preview along the top with the code underneath, with various other tools
and options to help you write your code.

19

CHAPTER 1 GETTING STARTED

Figure 1-23. Adobe Dreamweaver IDE

Another popular IDE is Visual Studio Code or VS Code for short. You
can download VS Code from the following website:

code.visualstudio.com

In Figure 1-24, we can see VS Code on the left-hand side showing our
HTML code with a browser preview open on the right showing the output
of the HTML code.

20

CHAPTER 1 GETTING STARTED

Figure 1-24. VS Code IDE

Another code editor to try is Brackets. Brackets is a free editor that you
can download from the developer’s website:

www.brackets.io

In Figure 1-25, you can see the Brackets window open on the left-hand
side, and it makes quite a nice little editor for coding. On the right-hand
side, you can open up your live preview to see what your page looks like as
you're writing your code.

21

CHAPTER 1 GETTING STARTED

Figure 1-25. Brackets App with Browser Preview

You can use any of these tools to write your code. Some of these IDEs
can be quite complex, so while you are learning, I suggest you stick with
Notepad and write the code manually so you can understand the structure
and meaning without distractions.

Throughout this book, we’ll be using Notepad/TextEdit to write our
code as shown in Figure 1-26; however, you can use any code editor you
like such as VS Code if you prefer.

22

CHAPTER 1 GETTING STARTED

Figure 1-26. Notepad Code Editor and Browser Preview

Lab Demo

In this demo, we’re going to explore how web servers work.

In Figure 1-27, the machine on the right has our web server installed.
A web server is a program that runs on the machine and serves web
pages (such as Abyss that we installed earlier). The web server software is
bound to a port. A port is a number used to identify a service running on a
machine. In this case, the service is a web server and is bound to port 80.
This machine is connected to a small network using cat5 cables through a
network switch.

23

CHAPTER 1 GETTING STARTED

Figure 1-27. Machine with Web Server Installed

The web server running on the machine on the right is pointing at the
public_html or htdocs directory stored on the machine’s hard drive. Here,
we can see we have an index.html file in the public_html directory on our
server (Figure 1-28). This is called the document root.

Figure 1-28. Document Root

Each computer on the network has an IP address, which is an address
that uniquely identifies a device on a network. The web server has an
IP address of 192.168.0.100 and is bound to port 80 (the default for
unencrypted web traffic). You can see the configuration summary as follows:

e IP address: 192.168.0.100
e Port: 80

e Documentroot: /var/www/public_html

24

CHAPTER 1 GETTING STARTED

Let’s add another computer. The computer on the left is called a
client and is a laptop running Windows with a web browser installed
(Figure 1-29). The browser could be Edge, Firefox, or Chrome.

Figure 1-29. Client Accessing a Web Server

This laptop connects to the web server using the IP address allocated
to the machine running the web server. On the laptop, we can type this
IP address into the address bar at the top of the browser: 192.168.0.100
(Figure 1-30).

Figure 1-30. IP Address

The laptop will connect to the web server using the server’s IP address
through port 80 (Figure 1-31).

25

CHAPTER 1 GETTING STARTED

Figure 1-31. Web Server Connected

On the laptop, the connection is assigned a port number between
49,152 and 65,535 so that returning traffic from the web server can be
identified as belonging to the same connection (Figure 1-32).

Figure 1-32. Connection Assigned Port Number

The IP address and the port number form a socket. There will be a
socket on the server and one on the laptop (client). Each socket is unique
and bidirectional, so applications can send and receive data (Figure 1-33).

26

CHAPTER 1 GETTING STARTED

Figure 1-33. Socket

Once a connection is established, the web server reads the index
HTML file in the public_html directory and sends the code in this file to
the laptop (client).

The browser on the laptop (client) then reads the HTML code and
creates the web page you see on your screen.

You may have noticed that when visiting a website, you don’t type in a
string of numbers, you type in a domain name. The problem is computers
don’t understand domain names, only IP addresses, so we need to
convert them.

In order to do this, we need to add another server to the mix called a
DNS server. This server converts our memorable domain names into IP
addresses.

When you enter the domain name into your browser, for example,
elluminetpress.com, your computer (the laptop) will send the domain
name to a DNS server. The DNS server responds with the IP address (e.g.,
192.168.0.100) (Figure 1-34).

27

CHAPTER 1 GETTING STARTED

Figure 1-34. Computer Connecting to the Web Server

Your computer (i.e., the laptop) then uses this IP address to connect to

the web server as before.

Lab Exercises

1. Setup your personal web server on your computer
or get access to a web host to host your HTML files.

2. Choose a text editor to edit your code, for example,

Notepad.
3. Whatis hypertext?
4. Whatis a URL?
5. Whatis HTML?

28

10.

CHAPTER 1 GETTING STARTED

What is CSS?

What is a web server?

What is the purpose of an index.html file?
What is an IP address?

What is the purpose of a DNS server?

Summary

Web pages are all linked together using clickable text or
images, called hyperlinks.

Code editors and IDEs

e VS Code

¢ Dreamweaver

e Brackets

o Text editor (Notepad, TextEdit, etc.)

A website and its pages are stored or hosted on a

web server.

A DNS server translates domain names into IP
addresses.

An IP address is a unique address that identifies a
device on the Internet.

29

CHAPTER 2

Introduction to HTML

In this chapter, we’ll take a look at the basics of an HTML document.
The basic structure of an HTML document has three parts:

e Document type declaration at the top
e Document header

e Body

Structure of an HTML Page

We can see in Figure 2-1 that an HTML page is a text file containing the
elements and information the web browser uses to display the web page.
Static web pages have the file extension .htm or more commonly .html.

Figure 2-1. Structure of an HTML Document

© Kevin Wilson 2023
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1_2

https://doi.org/10.1007/978-1-4842-9250-1_2#DOI

CHAPTER 2 INTRODUCTION TO HTML

At the top on the first line, we have the document type declaration.

Underneath, we have the first <html> element. This defines the start of
the HTML page.

Inside the <html> elements, we have the <head> element. This
contains information about the page as well as the document title.

Underneath, we have the <body> element. This is where the main body
of the document is defined. This is the bit you see in your browser window.

Finally, we need to close the <html> element. This marks the end of the
document.

Let’s explore an example in a bit more detail. Here, you can see a
simplified web page broken down to its most basic elements (Figure 2-2).

Figure 2-2. Blank HTML Document

<!DOCTYPE html> specifies what type of document the web browser
can expect, in this case, HTMLS5.

32

CHAPTER 2 INTRODUCTION TO HTML

The <html> element contains all the HTML code and defines the start
of the HTML page. You can also specify the language by adding the lang
attribute:

<html lang="en"”> to specify English
<html lang="es”> to specify Spanish
<html lang=“fr"> to specify French
<html lang="de”> to specify German
In the <head> of the document, you'll find

<title>: This is where we insert the page name as it
will appear at the top of the browser window or tab.

<style>: This is where you define embedded style
information for an HTML document using CSS. See
Chapter 4.

<link>: Link to an external style sheet. See
Chapter 4.

<script>: This is used to define client-side scripts,
such as JavaScript. See Chapter 8.

<meta>: This is where information about the
document is stored - character encoding, name,
description, etc. See the “Metadata” section later in
this chapter.

The <body> element contains all the elements and is where the main
content is written to display on the web page.
You might also find the following elements:

<lemvii >

33

https://doi.org/10.1007/978-1-4842-9250-1_4
https://doi.org/10.1007/978-1-4842-9250-1_4
https://doi.org/10.1007/978-1-4842-9250-1_8

CHAPTER 2 INTRODUCTION TO HTML

These elements specify a comment for the developer’s benefit and are
ignored by the browser. Comments are useful to document your code and
explain its function.

HTML Element Structure

Technically, an HTML element consists of a start tag, the element’s
attributes, the visible bit or the content, and an end tag. The HTML tag is
used to mark the start or end of an element.

Let’s take a closer look at how HTML elements are constructed.
Elements start with an opening tag and end with a closing tag. The tags
themselves start and end with angle brackets < >.

In the example in Figure 2-3, let’s have a look at the anchor element.
This element creates a hyperlink to another web page. The HTML element
starts with an opening tag and ends with a closing tag.

Opening Tag Closing Tag

Figure 2-3. HTML Opening and Closing Tags

The bit visible to the user goes in between the two tags.

34

CHAPTER 2 INTRODUCTION TO HTML

The opening HTML tag often contains some attributes that define the
HTML element’s properties and are used to control formatting, size, page
link references, and so on, and it is placed inside the element's opening
tag. For example, see Figure 2-4.

Figure 2-4. HTML Tag Structure

HTML attributes are made up of two parts: a name and a value.

e The name is the attribute you want to set. For example,
the anchor <a> element contains an attribute named
“href,” which indicates the address of the page you want
to link to.

o The value is what you want the attribute to be set to
and is always contained within quotation marks. In
this example, the page we want to link to is called
“about.html”

Let’s take a look at an example. Here, we want to add the link

u_n

“about us” to a website. The anchor element is represented by “a” and is
written as

 About Us

Let’s break the element down and see how it works.

35

CHAPTER 2 INTRODUCTION TO HTML

Figure 2-5. An HTML Element

The element starts with an opening angle bracket <, followed by the
element ID of the element we want to use, in this case, the “a” for anchor.
After that, we add any attributes as we can see in Figure 2-5.

Attributes contain additional pieces of information. Attributes take the
form of an opening tag, and additional info is placed inside. For example,
in the HTML tag earlier, “href” is an attribute, and “about.html” is the value
of the attribute.

We close the opening tag with an angle bracket >.

After the opening tag, we add the visible bit that the user will see on the
web page “About Us.”

The closing tag contains a forward slash before the element ID, in
this case:

In Figure 2-6, we can see the anchor element in the HTML document
on the left. The text “About Us” appears on the web page in the browser
window and is linked to the page about.html.

36

CHAPTER 2 INTRODUCTION TO HTML

Figure 2-6. Anchor Element

Similarly with an image element, we start with the opening tag,
then add the src attribute containing the image we want to display:

The image source (src) is an attribute of the opening tag. Notice
that the element doesn’t have a closing tag. This is known as an
empty, self-closing, or void element.

Metadata

Metadata is additional information about an HTML document. The meta
elements can be used to describe properties of the HTML document, such
as author, date, and content descriptions. Metadata is used by browsers to
determine how to display content and by search engines such as Bing or
Google to work out what a web page is about.

37

CHAPTER 2 INTRODUCTION TO HTML

<meta> always go inside the <head> of the HTML page as you can see
in the following:

<head>
<meta charset="UTF-8">
<meta name="description" content="Enjoy succulent meats..">
<meta name="author" content="Anna Wilson">

</head>

The meta element has various attributes such as charset and name.

A meta charset specifies the character encoding for the HTML
document which is usually UTF-8.

A meta name specifies names for the metadata such as a content
description that appears in search engine results of the page, keywords
that identify the content, and author of the page.

Lab Exercises

1. Open a new text file and save it as ch02.html.

2. Write the basic structure of an HTML document.
3. Whatis an HTML tag?

4. Whatis an HTML element?

5. What's the difference between an HTML tag and an
HTML element?

6. What is metadata?

7. Whatis the <head> section for in an HTML
document? What other elements can you include?

38

CHAPTER 2 INTRODUCTION TO HTML

Summary

An HTML element consists of a start tag, the element’s
attributes, the visible bit or the content, and an end tag.
The HTML tag is used to mark the start or end of an

element.

<IDOCTYPE html> specifies what type of document the
web browser can expect, in this case, HTMLS5.

Head elements contain information about the page as
well as the document title. These also contain other
elements such as title to specify a page title for the
browser window, style to include CSS styles, script to
include any JavaScripts, and meta to include metadata.

The body elements contain the main body of
the document. This is the bit you see in your
browser window.

39

CHAPTER 3

Getting Started
with HTML

In this chapter, we are going to build a very simple home page for our
restaurant website using common text formatting elements, and we’ll add
some images, links, tables, and lists.

This will provide you with a foundation and basic structure of a web
page using HTML, which you can build on later.

We’ll walk through the process from a blank HTML document, then
build the home page using the HTML elements.

We’ll also look at how to use the style attributes of each HTML
element. You can apply styles directly in the HTML code each time
you want to use the style such as fonts, text color, and page color. This,
however, is a bit cumbersome and becomes very difficult to maintain in
the long run, especially in larger projects where there is a lot of code. A
much better way is to use a style sheet or CSS to set fonts, text color, and
page color. This allows you to define all your styles once and in one place,
usually in a styles.css file. You can then call the CSS file from within your
HTML code, which we’ll look at in the next chapter.

For now, let’s concentrate on HTML code.

© Kevin Wilson 2023 41
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1_3

https://doi.org/10.1007/978-1-4842-9250-1_3#DOI

CHAPTER 3 GETTING STARTED WITH HTML

Setting Up

For the exercises in this chapter, we will be using Notepad and a web
browser. We’ll be saving our HTML files into the htdocs folder on our
personal web server we installed in Chapter 1.

Open your text editor. I'm going to use Notepad. This is where we’re
going to type in our code. We’re going to start with the outline of an HTML
document. For example, see Figure 3-1.

Figure 3-1. HTML Document Outline

To save the file, go to the “File” menu, then click “Save as” (Figure 3-2).

42

https://doi.org/10.1007/978-1-4842-9250-1_1

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-2. Save As in Notepad

From the “Save As” dialog box, navigate to your “Abyss Web Server”
folder on the C drive, then select “htdocs” (Figure 3-3).

Figure 3-3. Savein Abyss Web Server

43

CHAPTER 3 GETTING STARTED WITH HTML
In the “File name” field, enter the name of your web page:
index.html

Make sure the file extension is .html and the “Save as type” is set to
“All files” (Figure 3-4).

Figure 3-4. Save in Abyss Web Server

With the Abyss Personal Web Server running, open your web browser.
Enter the following into the address bar at the top:

http://127.0.0.1/index.html

index.html is the file we want to view. To view any other HTML files
you create, just substitute this file name.

Arrange your windows side by side; put Notepad on the left and your
web browser next to it on the right as they are on the opposite page. You
may need to resize your windows.

Every time you make any changes to your file in Notepad, you’ll need
to save the file, then click the refresh icon in your web browser.

Let’s get started.

Elements for Formatting Text

Asyou can see in the illustration in Figure 3-5, the text in the <title> tags
appears on the title tab in the web browser, and anything between the
<body> tags appears in the browser window.

44

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-5. Title and Body Text

HTML elements label the pieces of your web page, such as headings,
text formatting with bold or italic, paragraphs, images, links, and tables.

Let’s have a look at some simple formatting elements.

Main Heading Style

<h1>...</h1>
Subheading Style
<h2>...</h2>
Bold Text
...
Italic Text
<i>...</1>
Paragraph Text

<p>.. . </p>

45

CHAPTER 3 GETTING STARTED WITH HTML

HTML elements begin and end with an HTML tag and usually come in
pairs, and you’ll need to surround the piece of text or word using the start
and end tags.

For example:

<h1» This is the main page heading </h1»

Headings

Let’s add some of these elements to our web page. Start with the heading,
using the <h1> tag.

Figure 3-6. HTML Text Editor

In the illustration in Figure 3-6, the HTML document is open in a
text editor on the left. The same document is open in a web browser on
the right, and you can see the effect that each element has on the text, as
indicated by the red arrows.

46

CHAPTER 3 GETTING STARTED WITH HTML

Browsers do not display the HTML elements but use them to format
the content of the page according to their function.

Paragraphs

You can also add paragraphs. It is best practice to add all your paragraphs
between <p>...</p> tags:

<p> Every day, our expert chefs prepare a mouth-watering

feast of hand-carved meats including beef, turkey, pork and
marmalade-glazed gammon. All accompanied by ruffled roasties, a
wide range of veg, and giant yorkshire puddings. Served up
by our friendly team, every day of the week, our mouthwatering
Sunday roast and weekday carvery are sure to be a hit with all
the family.</p»

Bold Text

You can also make text bold or strong. Just surround the word or words
with the tags:

 beef, turkey, pork and marmalade-glazed gammon</b»
¢strong> beef, turkey, pork and marmalade-glazed gammon
</strong»

Have a look at the example (Figure 3-7).

47

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-7. Bold Text

The text “beef, turkey, pork and marmalade-glazed gammon.”
appears in bold or strong text.

Italic Text

You can also make text italic or emphasized. The <i> tag marks text in an
alternate voice, and the content inside is usually displayed in italic type.
The tag marks text as emphasized, and the content inside is usually
displayed in italic type.

To use these tags, just surround the word or words with the <i> or
 tags:

¢i> Served up by our friendly team, every day of the week, our
mouthwatering Sunday roast and weekday carvery are sure to be a
hit with all the family. </i»

48

CHAPTER 3 GETTING STARTED WITH HTML

<emy» Served up by our friendly team, every day of the week, our
mouthwatering Sunday roast and weekday carvery are sure to be a

hit with all the family. </em»

Have a look at the example (Figure 3-8). The text “Served up by our
friendly team, every day of the week, our mouthwatering Sunday roast and
weekday carvery are sure to be a hit with all the family” appears in italic or

emphasized text.

Figure 3-8. Italics

Now let’s put it all together using the information we just learned. In
the body of your HTML document, try adding the example in Figure 3-9.

49

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-9. Use of Tags

When you open the page in your web browser, you’ll see something
like Figure 3-10.

50

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-10. Tags in Use

The heading has been rendered using <H1>, and the tag line has been
rendered in bold text using .

Also, we have created a paragraph using the <p> tags. This tag splits the
text into neatly spaced paragraphs.

Page Background Color

To change the background color on any object, add the style attribute. Set
it to “background-color” and then choose a color from the HTML color list:

<body style = "background-color:Orange;">

51

CHAPTER 3 GETTING STARTED WITH HTML

Have a look at the code in Figure 3-11.

Figure 3-11. Background Color

You can also change the background color of other objects, such as the
paragraph background (Figure 3-12):

<p style = "background-color:Gold">

52

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-12. Background Color of Objects

Text Color

To change the text color, add the style attribute to a style (Figure 3-13).
Set the attribute to “color” and then select a color from the list of
HTML colors:

<H1 style = "color:Yellow;">

53

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-13. Text Color Change

Fonts

To change the font, add the style attribute to a style. Set the attribute font-
family to the font name you want (Figure 3-14). In this example, I'm using
Helvetica:

<h2 style = "font-family:Helvetica;">The Home of the
Roast!</h2>

Let’s add this line to our HTML file.

54

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-14. Changing the Font

The font on the subheading has changed to Helvetica.

You can choose from a variety of fonts. Not all of them are supported
by all browsers but most of them are.

You can also make use of Google Fonts.

HTML Entities

An HTML entity is a bit of text that begins with an ampersand and ends
with a semicolon and is frequently used to display reserved characters

which would otherwise be interpreted as HTML code, invisible characters

such as nonbreaking spaces, and symbols. A commonly used entity in
HTML is the nonbreaking space:

55

CHAPTER 3 GETTING STARTED WITH HTML
If you want to add the copyright sign, use
©

or perhaps the dollar ($) or pound (£) sign:

$
£

Figure 3-15 shows a list of commonly used characters.

Figure 3-15. Commonly Used Characters

Adding Images
To add an image, use the element:

Use the src attribute to specify the file name and location of the image.
It is advised to keep images in a separate folder called “img,” “images,”
or sometimes “assets.” This helps to keep all your files organized. In this

guide, we’ll save our images into the “img” folder on our web server.

56

CHAPTER 3 GETTING STARTED WITH HTML

To reference the image in the src attribute of the img element, add
the folder name followed by a forward slash, then the image name
(Figure 3-16).

Figure 3-16. Adding an Image

Notice that the size of this image is large. You can also specify the size
of the image using the width and height attributes measured in pixels (px).

Figure 3-17. Image Size

57

CHAPTER 3 GETTING STARTED WITH HTML

By default, the image will be displayed according to the saved width
and height of the actual image (Figure 3-17), but you can override this.

Understanding Image Dimensions

Image dimensions (i.e., the width and height) are specified in pixels (px).
The image in Figure 3-18 is 500px by 220px. This means there are 500
pixels across the width and 220 pixels along the height.

Figure 3-18. Image Resizing

Ifyou look at the image in Figure 3-18, it is a bit small and could do
with expanding to the length of the page.

The width of 500px would be a better fit, so add the width attribute and
set it to “500” (Figure 3-19):

This will widen the image and automatically adjust the length to
prevent the image from being stretched.
You can also specify both width and height.

58

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-19. Adjusting the Image Size

Image Alignment

Images can be aligned to the left or to the right of the page just like text
paragraphs using the alignment attribute.

In the preceding example, when we added the image to the web page,
we just added it to the bottom of the page. The image is by default aligned
to the left of the page.

You can align the images with your paragraphs on your page. This
makes a much neater article to read.

To do this, you will need to nest the element inside your
paragraph <p> tag. This is simpler than it sounds.

I’m going to align the image to the right-hand side, using the align
attribute, and put the element after the paragraph’s <p> tag. Have a
look at the illustration in Figure 3-20.

59

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-20. Making the Image Fit

Also, to make the image fit, you’ll need to resize it using the width
attribute on your element. The width of our page is 540px, so
roughly half that length would be sufficient. So set the width attribute to
250. Have a look at the highlighted line in the Notepad document earlier.

What happens if you change the align attribute to “left” or “middle”?

Background Image

You can add images to the background of many HTML elements such
as the paragraph element or a table. For example, if I wanted to add a
background image to the body of the document:

<body style = "background-image: url('img/img-bg.jpg')";

In Figure 3-21, I've highlighted where we’ve added the line.

60

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-21. Image Added to the Background

Notice the image is too big for the screen.
We can resize the width using the background-size attribute. The first
parameter is the width, and the second is the height:

background-size: width height
For example:
background-size: 100%;

You’ll also notice that the background image is repeated down the
page (Figure 3-22).

61

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-22. Image Repeated in Background

To change this, add
background-repeat: no-repeat

Let’s take a look. Now you’ll see the background only appears once
(Figure 3-23).

62

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-23. Background Image Appears Once

You can also add background images to other elements such as a
paragraph:

<p style="background-image: url('img/img bg.jpg);">

Adding Tables

To create a table, use the following tags:
<table> </table>

Inside these tags, you can use the following tags to define each
table row:

<tr>...</tr>

Use the following tags to define each entry in that row - these become
the columns:

<td>...</td>

Let’s try an example (Figure 3-24).

63

CHAPTER 3 GETTING STARTED WITH HTML

Figure 3-24. Creating a Table

Let’s add the code to our web page. Type the table code as shown in
Notepad on the bottom left (Figure 3-25).

Figure 3-25. Table on the Web Page

Adding Links

Links can be added to your website using the anchor tags <a>.... You
can link to another website, another page, a document, or something to
download.

64

CHAPTER 3 GETTING STARTED WITH HTML

Start with the anchor tag, then use the href attribute to specify the URL
of the website or page you want to link to. Type the URL or page name
between the speech marks:

Add the name of the link that will appear on the website between
the tags:

View our Menu
So, putting it all together, we get this:
 View our Menu

Try adding the line to the bottom of the document in Notepad. We’ve
added the anchor tag between a paragraph tag to space out the lines
(Figure 3-26).

Figure 3-26. Linking the Menu

65

CHAPTER 3 GETTING STARTED WITH HTML

You can see the link in the web page on the right-hand side has blue
underlined text. This indicates a link.

You can also link to specific files such as images, documents, or
downloads.

For example, if you have a document in the folder called “uploads” in
your PUBLIC_HTML or htdocs directory, you could have a PDF document
in the “uploads” folder (Figure 3-27). On our personal web server, you can
create a new folder in C:\Abyss Web Server\htdocs\ using the file explorer.

Figure 3-27. Link to Images and Documents

To link to this file, we add the directory name before the document
name, for example:

 Download Now

If the resource, image, or page is somewhere else on the Web, you’ll
need to add the full address in the href attribute, for example:

www.ellumitechacademy.com/uploads/menu.pdf

66

CHAPTER 3 GETTING STARTED WITH HTML
Or on our server:
localhost/uploads/menu.pdf

For 100% compatibility when linking to other sites and resources
outside your own site, it is good practice to add the protocol to the
beginning of your href URL, for example:

https://www.ellumitechacademy.com/uploads/menu.pdf
O On Our server:
http://localhost/uploads/menu.pdf
Other protocols could be

ftp:
mailto:
file:
http:
https:

depending on where your resource is hosted.

Using Images As Links

You can also make an image into a link. To do this, all you need to do is
insert your image:

between the anchor tags <a>.... I want the image to link to the
home page.
So you get something like this:

67

CHAPTER 3 GETTING STARTED WITH HTML

Let’s take a look; add the code underneath. I have used an image
called carvery.jpg in the images directory, so make sure you add

images/

before the file name in the src attribute of the tag. Have a look at the
code highlighted in the Notepad document on the left (Figure 3-28).

Figure 3-28. Menu Link in the Image

Notice the mouse pointer turns into a hand when you hover over the
image (Figure 3-29). This indicates a link.

Figure 3-29. The Menu Link Appears

You can usually see the destination URL in the status bar at the bottom
of your web browser.

68

CHAPTER 3 GETTING STARTED WITH HTML

Preserve Formatting

Sometimes, you might want your text to follow the exact format of how
it is written in the HTML document. In these cases, you can use the
preformatted tags:

<pre>... </pre>

Adding Lists

Unordered lists appear as bulleted lists. Ordered lists appear as
numbered lists.

Unordered List

Use the ... tags. For each item in the list, you will need to add text
between the ... tags (Figure 3-30).

Figure 3-30. Unordered List

69

CHAPTER 3 GETTING STARTED WITH HTML

Ordered List

Use the ... tags. For each item in the list, you will need to add the
text between the ... tags (Figure 3-31).

Figure 3-31. Ordered List

Structuring Your Web Page

HTMLS5 introduced some new layout and structuring tags that help us to
define and format our web page. These are known as semantic elements
and can be used to define different parts of a web page. Semantic elements
clearly describe the meaning of the content to the browser and developer.
In other words, the elements have meaningful names.

These tags are useful for users who rely on screen readers. These
readers audibly describe the content of the page, and if you are using
semantic elements, this allows screen readers to communicate the content
of the page more accurately.

70

CHAPTER 3 GETTING STARTED WITH HTML

Search engines such as Google and Bing will use the semantic

elements to identify and figure out which parts of your site contain the

most important content.

Table 3-1 lists a few common elements.

Table 3-1. Common Elements

<header> ... </header>

<nav> ... </nav>

<mainy ... </main>

<section> ... </section>

<articley> ... </article>

<aside> ... </aside>

<footer> ... </footer>

<figure> ... </figure>

<figcaption> ...
</figcaption>
<summary> ... </summary>

<details> ... </details>

<div class=" "> ...
</div>

A container for introductory content, page titles, or
headings

A section of a page used to contain navigation
links such as site menus

Contains the main content of the page
A stand-alone section of the main page

A self-contained section in a document or page
that can be reused such as a blog article or widget

Allows you to define some content aside from the
main content such as a sidebar

Contains information such as footnotes, author,
and copyright data

Contains photos, images, illustrations, or diagrams

Allows you to define a caption for a <figure>
element

Allows you to define a visible heading for the
<details> element

Allows you to specify content that the user can
open and close

Defines a division or a section in an HTML
document and can be used as a container for
HTML elements styled with CSS or manipulated
using the class or id attribute. See Chapter 4

71

https://doi.org/10.1007/978-1-4842-9250-1_4

CHAPTER 3 GETTING STARTED WITH HTML

Let’s start adding these to the relevant sections of our HTML page. Our
page has a header “Welcome to Anna’s Kitchen,” so we can surround that
with the <header> tags, and a navigation bar, so we can surround the nav
image map with the <nav> tags (Figure 3-32).

Figure 3-32. Tags

The main content can go in a <section> tag, any images can go in the
<figure> tab, and we can add a footer using the <footer> tags.

Lab Exercises

1. Open a new text file and save it as ch03.html.
2. Write the basic structure of an HTML document.

3. How do you write bold text using HTML elements?

72

CHAPTER 3 GETTING STARTED WITH HTML

4. How to define the document’s body?
5. How do you create headings using HTML elements?
6. Inthe HTML document ch03.html, create a heading.

7. Change the background color to #E2E0E2 or one of
your own choice.

8. Startanew paragraph, then add a paragraph of text.

9. Inserta hyperlink to the document you created in
the previous chapter (ch02.html).

Summary

e When using the local Abyss Server on your computer,
save documents to C:\Abyss Web Server\htdocs.

o To access the website on your computer with a browser,
use http://127.0.0.1.

e Main heading style: <hl>...</h1>
e Subheading style: <h2>...</h2>

e Minor heading style: <h3>...</h3>
o Bold text: ...

o [talic text: <i>...</i>

o Paragraph text: <p>...</p>

o Add a style attribute to change color, for example, <H1
style = “color:Yellow;”>.

e Add a style attribute to change font, for example,
<H1 style = “font-family:Helvetica;”>.

73

CHAPTER 3

74

GETTING STARTED WITH HTML

To add a table, use <table> </table>.
To define each table row, use <tr>...</tr>.

To define data to that row, use <td>...</td>.

Use the img element to add an image: <img src = “”

width =“">.

Use the anchor element to define hyperlinks:

<ahref=“">.

CHAPTER 4

Cascading Style
Sheets

Cascading Style Sheets (CSS) are used to define and customize the styles
and layouts for your web pages. This means you can create style sheets to
alter the design, layout, and responsiveness to different screen sizes on
various devices from computers to smartphones.

CSS describes how HTML elements are to be displayed on screen and
controls the layout of multiple web pages all at once. This is because the
style sheets are stored in separate CSS files and are linked to the HTML
document.

CSS solved a big problem. HTML was never originally intended
to contain tags for formatting a web page and was created to describe
the content of said web page. When more formatting attributes were
added to the HTML 3.2 specification, it became a total nightmare for
web developers to design and maintain websites. This is because fonts,
formatting, layout, and color information were added to every single
HTML tag on every page, so making changes and maintaining a website
was a long and expensive process.

To solve this problem, the World Wide Web Consortium (W3C) created
and introduced CSS. CSS removed the style formatting from the HTML
page and allowed the developer to include the formatting and layout
information in a separate file which could be included in all the other
HTML pages that make up the website.

© Kevin Wilson 2023 75
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/ 10.1007/978-1-4842-9250-1_4

https://doi.org/10.1007/978-1-4842-9250-1_4#DOI

CHAPTER 4 CASCADING STYLE SHEETS

The word “cascading” means that styling rules flow down from several
sources. This means that CSS has a hierarchy, and styles of a higher
precedence will overwrite styles of a lower precedence. In other words,
styles lower down the hierarchy have higher priority over those higher up.

There are three methods you can use to include CSS styles in your
HTML document.

First, you can include them inline using the style attribute within the
opening tag:

<h1 style="color:blue; font-size:14px;"> Heading 1</h1>

You can embed the styles using the <style> element in the head section
of a document:

<head>
<style>
H1 {
color:blue;
font-size:14px;"
}
</style>
</head>

You can include CSS styles saved in another file using the <link>
element with the href attribute pointing to the CSS file:

<link rel="stylesheet" href="style.css">

External CSS Files

It is recommended that you add your CSS declarations to a separate text
file and link that file into all the relevant HTML files (Figure 4-1). In this
way, you have all your style declarations in one place and can change
things easily.

76

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-1. Linking a CSS File into an HTML Page

As we have seen in the previous chapter, we had to style each element
every time we use it. These are known as inline styles and are very
inefficient. What happens if we have a large website and we've styled every
heading to be 20px, white, using the Helvetica font, and the client wants
to change the color of the text or the font. We’d have to go through every
instance and change it. Sounds like a nightmare to me.

A much better way is to define all the elements, tags, and so on using a
style sheet. This is where CSS shows its true power. If the client came with
the preceding request, and we used CSS style sheets, we would only have
to change the declaration in the CSS, and every instance would change
throughout the whole site.

Create a text file with the .CSS file extension and make sure it’s in the
same directory as your HTML files (Figure 4-2).

77

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-2. .CSS Text File

Add this line in the <head> section of each HTML file that is to be
styled using the declarations contained in the CSS file. Use the href
attribute to point to the CSS file:

<link rel="stylesheet" type="text/css" href="styles.css">

CSS Syntax

Let’s take a look at the basic syntax of a CSS rule. As you can see in
Figure 4-3, the CSS rule consists of a selector and a declaration block.

78

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-3. CSS Syntax

The selector points to the HTML or element you want to style. The
declaration block starts with a curly brace and contains one or more style
declarations separated by semicolons. Each declaration includes a CSS
property name and a value, separated by a colon.

You can use these to configure the styles of the classes and selectors
using various properties as you can see in Figure 4-4.

Figure 4-4. Styling Various CSS Selectors

79

CHAPTER 4 CASCADING STYLE SHEETS

Element Type Selector

This creates a general style for the declared element and is best used when
all instances of that element are to be styled in the same way:

H1 {
color: white;
font-family: Helvetica;

Here, all the H1 elements will be styled in a white Helvetica font.

Class Selector

A class selector is used to apply styles to a specific HTML element. You can
name the class anything you want, and it must begin with a dot (or period).
Use class selectors when you want to style multiple elements throughout
the page or site with the same look or layout.

So in this example, I'm creating a highlight style I can apply to various
HTML elements such as headings <H1> and <H2> or a paragraph <p>:

.highlight {
background-color: yellow;

In your HTML code, assign the .highlight class selector you defined in
your CSS declarations using the class attribute in any HTML element. For
example, if I wanted to highlight the heading on the <h2> tag, I'd use the
class attribute and assign the class selector I defined earlier:

<h2 class = "highlight">
The Home of the Roast
</h2>

Similarly, if I wanted to highlight the paragraph

80

CHAPTER 4 CASCADING STYLE SHEETS

<p class = "highlight">
Every day, our expert chefs...
</p>

Let’s add this to our little web page. I've declared the .highlight class in
the styles.css file. You can see it highlighted in Figure 4-5. I've applied the
-highlight class selector to the <h2> HTML tag highlighted in the index.
html file.

Figure 4-5. .highlight Class

ID Selector

The ID selector targets a single element and can only be used once per page.

ID selectors are defined in the CSS declarations using a hashtag # and
should only be used when you have a single element on the page that will
have that particular style or layout.

81

CHAPTER 4 CASCADING STYLE SHEETS

Here, we're going to set the background color of the footer to gold, and
we want the footer to be 100 pixels high, the text aligned in the center, and
the text aligned in the middle vertically:

#footer {
background-color : gold;
line-height : 50px;
text-align : center;
vertical-align : middle;

You can now use the footer id in a div tag like this:

<div id= "footer"> </div>

Universal Selector

The universal selector matches every single element on the page. The
universal selector is useful when you add a particular style in all the HTML
elements within your web page:

*A
margin: 5;
padding: 5;
}

Grouping Selectors

If you want to style more than one selector with the same styles, you can do
this by grouping the selectors together.

For example, if I wanted to create a style where all my headings are in
the center and are colored gold, instead of declaring them all individually

as we see as follows:

82

CHAPTER 4 CASCADING STYLE SHEETS

h1 {
text-align: center;
color: gold;

}

h2 {
text-align: center;
color: gold;

}

h3 {
text-align: center;
color: gold;

}
I can group all the selectors together followed by the declarations:

hi, h2, h3 {
text-align: center;
color: gold;

}

This is much more efficient and allows you to declare the styles once.

Styling Text

If I wanted to style the H1 tag for my headings, I could write something like
this in the styles.css file:

H1 {
font-color: yellow;
font-family: Roboto;

This would style all the H1 tags used subsequently in the HTML file.

83

CHAPTER 4 CASCADING STYLE SHEETS

If I wanted to style my subheadings <H2>, I can do the same. I want to
change the font color to yellow with a Roboto font, but this time I want to
make the text heavier or more bold. I can do this by adding the font-weight

property:

H2 {
color: yellow;
font-family: Roboto;
font-weight: 400;

Let’s take a look at what happens when we add the code to our website
(Figure 4-6).

Figure 4-6. Adding Color to the Website

Asyou can see in Figure 4-7, the titles have changed font and color.

84

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-7. Changing Font Color

Try changing the font color and alignment in the styles.css file and see

what happens.

Specifying Colors
You can specify colors using the following formats:

e A Color keyword such as “red,” “green,” “blue,”

” u

“transparent,” “orange,” etc.

e Ahexvalue such as “#000000”, “#00A500’,
“4#FFFFFF’, etc.

e An RGB value such as “rgb(255, 255, 0)”

Keyword

You can use a keyword for the color you want such as black, white, navy,
silver, yellow, orange, darkorange, gold, and so on. See Appendix C for the
full list. For example:

h1 {
color: orange;

85

CHAPTER 4 CASCADING STYLE SHEETS

Hex Value

A hex value represents colors using a six-digit code preceded by a hash
character. The code is split into three two-digit hex numbers that represent
the amount of red, green, and blue in varying intensities to create the color
you want. The values are represented using the hexadecimal numbering
scheme, not decimal. See Appendix C for the full list.

Hex 01t 23 45678 9 A B C D E F
Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

So, for example, to create orange, we need full red, a bit of green, and
no blue. FF in hex is 255 in decimal; A5 in hex is 165 in decimal. The hex
code would be

Red Green Blue
FF A5 00

We can use this hex code to represent the color we want:

h1 {
color: #FFA500;

RGB Value

You can specify a color using the rgb() function. This function accepts
three values from 0 to 255, which specify the amount of red, green, and
blue in varying intensities to create the color you want. So, to create
orange, we need red mixed with a little bit of green but no blue.

86

CHAPTER 4 CASCADING STYLE SHEETS

Red Green Blue
255 165 0

hl {
color: rgb(255, 165, 0);

See Appendix C for the full list of color codes.

Understanding Measurement Units

To control the size of certain objects such as fonts or images, the sizes are
specified using various units. There are two types: absolute and relative.

Units that are absolute are the same size regardless of the parent
element or window size. Table 4-1 shows some examples.

Table 4-1. Unit Meaning

Unit Meaning

in Inch

mm Millimeter

px Short for pixels and is usually used to measure the dimensions of
an image

pt Short for points and is used to measure the size of a font

Units that are relative scale in relation to the parent element or window

size depending on the unit used. Here are some examples:

87

CHAPTER 4 CASCADING STYLE SHEETS

Unit Meaning

em Relative to the current font size of the element. If a font is 12pt,
each em unit would be 12pt, so 2em would be 12 x 2 which is 24pt,
similarly 1.5em would be 18pt

% Relative to the parent element or window size

Padding, Margins, and Borders

HTML elements can be considered as boxes. The CSS box model is
essentially a box that wraps around every HTML element. Around the
content are various layers; the first is padding, then the border, then the
margin (Figure 4-8).

Figure 4-8. The Box Model

88

CHAPTER 4 CASCADING STYLE SHEETS

Let’s take a look at the different parts. In Figure 4-8, we can see that
o The content of the box is where text and images appear.

e The padding property is used to add space around the
content, inside of the defined border.

e The margin property is used to add space around the
content, outside of the defined border.

o The border-style property specifies what kind of border
to display.
So, for example, let’s add a style to our H1 heading:
.myClass {
padding: 10px;
border: solid 5px black;

margin: 20px;

}

When we open the HTML page in the web browser, we will see
something like Figure 4-9.

89

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-9. Boxes in Use

If you look in the web browser, you can see the box model around
the heading. The dotted lines mark the edge of the content. Then we see
10px of padding, then a 5px thick black border, and 20px margin outside
the border.

Layouts

In the previous section, the website we've been working on is very linear,
meaning each section is just listed under the next. With style sheets,
you're not just limited to restyling HTML tags, you can define layouts and
sections.

90

CHAPTER 4 CASCADING STYLE SHEETS

Flexbox

Flexbox is a layout module designed for laying out content in one
dimension (row or column, not both at the same time) and works best with
items that have different sizes. Flexbox consists of flex containers (called
the parent elements) that contain flex items (called the child elements)
(Figure 4-10).

Figure 4-10. Flexbox Container

The items in the flex container can be laid out in any direction and can
“flex” their sizes which means the items can grow to fill unused space or
shrink depending on the screen size.

We can create a container in our CSS code like this:

.flex-container {
display: flex;
}

The flex property in the display element sets how a flex item will grow
or shrink to fit the space available in its container.

We can change the container direction to span rows or columns
(Figure 4-11).

91

CHAPTER 4 CASCADING STYLE SHEETS

IIIIIII||IIIIIIIIIIIIIIIIIIIIlIIIII’

Figure 4-11. Flexbox Container Spanning Rows and Columns

If we want the items to be stacked side by side in rows (Figure 4-12).
This is the default.

Figure 4-12. Flexbox Container Spanning Rows

To do this, we use flex-direction: rows:

.flex-container {
display: flex;
flex-direction: row;

}

If we want the items to be stacked on top of each other in columns
(Figure 4-13),

92

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-13. Flexbox Container Spanning Columns

To do this, use flex-direction: columns:

.flex-container {
display: flex;
flex-direction: column;

}

We can specify whether we want the items to wrap or not. Here, the
items will wrap to the next row if the screen size is smaller (Figure 4-14).

Figure 4-14. Flexbox Container Wrapping

93

CHAPTER 4 CASCADING STYLE SHEETS

In this example, we're going to wrap the contents, so we add flex-
wrap: wrap:

.flex-container {
display: flex;
flex-direction: row;
flex-wrap: wrap;

}

Now that we have created the container, we can add some items using
the <div> element. In our HTML code, we can add

<div class="flex-container">
<divy This is content inside item </divy
<divy> <img src="img/bluebox.png"» </div»
<divy <img src="img/bluebox.png"» </div»
</div>

The order property specifies the order of the flex items:

<div class="flex-container">
<div style="order: 3"> This is content inside item </div>
<div style="order: 1"> </div>
<div style="order: 2"> </div>

</div>

If we want to style the items inside the container, we can use the

u_n”

greater than “>” symbol:

.flex-container-name » child-item-name {

94

CHAPTER 4 CASCADING STYLE SHEETS

This symbol is used to select the element with a specific parent. Since
each item in the flex-container is specified with a <div> element, these are
the child items. So the child-item-name we want is div, and it belongs to
flex-container. Now let’s change the background color to light gray, then
add a margin and some padding to space out the items:

.flex-container » div {
background-color: #fifif1;
margin: 10px;
padding: 10px;

}

In Figure 4-15, we have our HTML code open on the top left, with our
CSS code open on the bottom left. On the right, we can see what it looks
like in a web browser. What happens when you resize the width of the
browser window (Figure 4-15)?

Figure 4-15. Resizing

95

CHAPTER 4 CASCADING STYLE SHEETS

Putting Flexbox into Practice

Let’s create a layout for our website (Figure 4-16). Here, we want to create
a header and a navigation bar along the top of the page; then underneath,
we want to create the site content with a sidebar to the right - this is the

only part we're using flexbox. Finally, we want to add a footer to the page.

Figure 4-16. Website Layout

In the CSS code file, we can declare our header, navigation, and footer
using simple CSS class selectors:

.header {
background: orange;
padding: 2em;
text-align: center;

}

.nav {
background: yellow;
padding: 1em;
text-align: center;

}

.footer {
background: orange;
padding: 1em;

}

96

CHAPTER 4 CASCADING STYLE SHEETS

When we get to the content and sidebar, this is where we want to use
flexbox. We can create our container:

.flex-container {
display: flex;
flex-direction: row;

}

Then create the content and sidebar as child items of the container.
Add some padding to space out the content, and set the background color
of the sidebar to gray:

.flex-container > .content {
padding: 10px;

.flex-container > .sidebar {
background-color: #fififi;
padding: 10px;

Now in our HTML code file, we can add our header and nav bar using
the <div> element. Just add the name of the selector defining the header
using the “class” attribute in the opening <div> tag. Add the content to
display between the opening and closing <div> tags:

<div class="header"»
<h1> Welcome To Anna's Kitchen</h1>
 The Home of the Roast!
</div>

97

CHAPTER 4 CASCADING STYLE SHEETS
Do the same for the nav bar:

<div class="nav"»

 Home |

 Menu |

 Book a Table
</div>

Next, we need to create our flexbox container to contain the content
and sidebar. We can add the flex-container using the “class” attribute in the
opening <div> tag:

<div class="flex-container"»

Then inside the flex-container <div> element we declared earlier,
we can add another <div> element with the content child item using the
“class” attribute in the opening <div> tag:

<div class="content">
<p>
Every day, our expert chefs prepare a mouth-watering
feast of
hand-carved meats including beef, turkey, pork and
marmalade-
glazed gammon. All accompanied by ruffled
roasties, a wide
range of veg, and giant yorkshire puddings. <i> Served
up by our
friendly team, every day of the week, our
mouthwatering Sunday
roast and weekday carvery are sure to be a hit
with all the
family.</i> </p>

</div>

98

CHAPTER 4 CASCADING STYLE SHEETS
And do the same with the sidebar:

<div class="sidebar"»
<img src="img/menumap.png" width="220px"
usemap="#foodmenu">
<map name = "foodmenu">

<area shape= "rect" coords
“menul.htm">

"0,0,220,202" href =

<area shape= "rect" coords

"0,202,220,395" href

"menu2.htm">
<area shape= "rect" coords

"0,395,220,596" href
"menu3.htm">
</map>
</div>

Remember to close the flex-container with
</div>

We will see something like Figure 4-17.

99

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-17. Flex Container
Notice that things don’t wrap when we resize the window. To make
things wrap, we need to add the flex attribute to the container:

.flex-container {
display: flex;
flex-direction: row;
flex-wrap: wrap;

}

as well as to the children:

flex: flex-grow flex-shrink flex-basis;

100

CHAPTER 4 CASCADING STYLE SHEETS

flex-grow specifies how much the item will grow relative to the rest of
the flexible items by a factor. flex-grow: 0 means items won'’t grow. flex-
grow: 1 means items can grow larger than their flex-basis.

flex-shrink specifies how much the item will shrink relative to the rest
of the flexible items. flex-shrink: 1 means items can shrink smaller than
their flex-basis.

flex-basis is the length of the item measured in “%’, “px’, or “em”. You
can also have values: “auto” or “inherit”

For example, if I add the following to the content item:

flex: 1 1 250px;

what does this mean?

flex-grow: 1 means items can grow larger than their flex-basis.

flex-shrink: 1 means items can shrink smaller than their flex-basis.

flex: 250px means once the first row gets to a point where there is not
enough space to place another 250px item, a new flex line is created for the
items. As the items can grow, they will expand larger than 250px in order
to fill each row completely. If there is only one item on the final line, it will
stretch to fill the entire line.

So we end up with this:

.flex-container > .content {
flex: 1 1 250px;
padding: 10px;

}

.flex-container > .sidebar {
flex: 1 1 50px;
background-color: #fifif1;
padding: 10px;

Let’s take a look at what this looks like in a browser (Figure 4-18).

101

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-18. Flex Containers in the Browser

What happens when you resize the browser window? Notice how they
stretch when we extend the width of the browser. Also, notice how the
sidebar wraps when we reduce the width of the browser. It will wrap when
the content gets to 250px (Figure 4-19).

102

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-19. The Sidebar Sized at 250px

Let’s try it. Here, we've reduced the browser width and expanded the
width to see what happens (Figure 4-20).

103

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-20. The Width Reduced and Expanded

104

CHAPTER 4 CASCADING STYLE SHEETS

Keep in mind that flexbox can only handle rows or columns, not both.

CSS Grid

A CSS grid layout is a two-dimensional grid-based layout system with rows
and columns that is designed to make it easier to lay out web pages and
enables a developer to align elements into columns and rows. A CSS grid is
a perfect candidate for whole page layouts.

In Figure 4-21, the vertical lines are called columns, and the horizontal
lines are called rows. The spaces between each column/row are called row
gaps. Grid items such as images or text can be aligned along the rows and
columns of the grid and are called grid items (Figure 4-22).

Figure 4-21. CSS Grid

105

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-22. CSS Grid with Items

Putting CSS Grid into Practice

In this example, we want to lay out our website as follows. We want the
width to span four columns. This means the header and the footer will
span the full four columns. We also want the content to fill three columns
(col 1, col 2, col 3). The sidebar will take up the last column (col 4). The
site will also be split into three rows. The header on row 1, the content
and sidebar on row 2, and the footer on row 3. We can see this layout in
Figure 4-23.

106

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-23. CSS Grid Template

First, we need to create a grid container:

.container {
display:grid
}

Next, we need to specify how many rows and columns we are going
to use. Looking at the template in Figure 4-23, we need four columns. The
grid-template-columns property defines the number of columns in your grid
layout. The “auto” attribute means the columns will be automatically sized.
You need to specify a size for each column. You can also specify a size here:

107

CHAPTER 4 CASCADING STYLE SHEETS

.container {
display:grid
grid-template-columns: auto auto auto auto;

}

We now need to specify how many rows we want to use. Looking at
Figure 4-23, we need three rows: one for the header, one for the content
and sidebar, and another for the footer. The grid-template-rows property
defines the number of rows in your grid layout. The “auto” attribute means
the rows will be automatically sized. You need to specify a size for each
row. You can also specify a size here:

.container {
display:grid
grid-template-columns: auto auto auto auto;
grid-template-rows: auto auto auto;

}

Now that we have created our container, we need to create the
items. The first item is the header. Here, we've specified that we want the
background of the header orange. Next, we want to state on which row/
column the header starts:

grid-row-start: 1;
grid-column-start: 1;

Here, we're starting on row 1, column 1, and the header ends before
row 2, column 5. For this, we use the grid-row-end property. This defines
how many rows an item will span or on which row line the item will end:

grid-row-end: 2;
grid-column-end: 5;

108

CHAPTER 4 CASCADING STYLE SHEETS

We end up with this:

.header {
background-color: orange;
grid-row-start: 1;
grid-column-start: 1;
grid-row-end: 2;
grid-column-end: 5;
padding: 20px;
text-align: center;

Finally, we can add some padding to space out the contents of the
header and align the text to the center.

We can do the same for the footer. Here, the footer starts on row 3 and
ends after column 4 (which is 5). Again, we change the background color
to orange and add some padding with the text aligned to the center:

.footer {
background-color: orange;
grid-row-start: 3;
grid-column-start: 1;
grid-row-end: 4;
grid-column-end: 5;
padding: 20px;
text-align: center;

Now, for the content, this will start on row 2, but only span columns
1,2, and 3 - so we end after 3 (which is 4). The sidebar will fill the

last column:

.content {
grid-row-start: 2;
grid-column-start: 1;

109

CHAPTER 4 CASCADING STYLE SHEETS

grid-row-end: 3;
grid-column-end: 4;
padding: 20px;

For the sidebar, we want to start on row 2, but just fill the last column after
the content, so we start on column 4 and end after column 4 (which is 5):

.sidebar {
background-color: lightgrey;
grid-row-start: 2;
grid-column-start: 4;
grid-row-end: 3;
grid-column-end: 5;

Now we need to build the page using the grid containers in our HTML
document. We do this with the <div> tag.

First, we add the container; remember we called the container layout-
grid and it’s specified as a class, so we add it using the class attribute to the
opening <div> tag:
<div class="layout-grid">

Inside, we can add the elements. First is the header:

<div class="header"»
<h1> Welcome To Anna's Kitchen</h1>

 The Home of the Roast!
</divy

then the rest of the elements. Just add the contents to the elements
between the two <div> tags:

<div class="content">

</div>

110

CHAPTER 4 CASCADING STYLE SHEETS

<div class="sidebar">

</div>

<div class="footer">

</div>
</div>

Let’s put it all together and see what it looks like (Figure 4-24).

Figure 4-24. Elements Added

111

CHAPTER 4 CASCADING STYLE SHEETS

Responsive Grid Layouts

Responsive design is an approach to web design that allows your website
content to adapt to different screen and window sizes used on a variety of
different devices such as phones, tablets, and computers.

If we have a look at a simple website on a tablet, the screen looks OK
and is sized correctly (Figure 4-25).

Figure 4-25. Web Design on a Tablet

Notice what happens when you resize the browser window on
the PC. The layout starts to stretch and resize. You can see that the
background image in the sidebar on the right no longer fits and is too small
(Figure 4-26).

112

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-26. Web Design on a Laptop

Or if we view the website on a phone (Figure 4-27), the sidebar is
hidden below the main text.

113

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-27. Web Design on a Phone

The layout changes depending on the screen size. Pages should be
optimized for a variety of screen sizes, but how do we do this? These days,
thanks to smartphones, tablets, laptops with different screen sizes, and
PCs, many web pages are based on a responsive grid view. This means web
pages based on a grid view are divided into columns.

A responsive grid view often has 12 columns and has a total width
of 100%. This will shrink or expand as you resize the browser window
(Figure 4-28).

114

Figure 4-28. Responsive Grid View

CHAPTER 4 CASCADING STYLE SHEETS

Between each column, you'll find a gutter, and at either side of the grid,

there is a margin.

To construct the grid view in CSS, first we calculate the percentage for

one column:

100% / 12 x 1 columns = 8.33%.

The next column would be 100% / 12x 2 = 16.66%.
The next column: 100% / 12 x 3 = 25%.

And so on....

Next, we need to make one class for each of the 12 columns and the

percentage sizes we calculated in the previous step:

.col-1 {width:
.col-2 {width:
.col-3 {width:
.col-4 {width:
.col-5 {width:
.col-6 {width:
.col-7 {width:

8.33%;}
16.66%; }
25%; }
33.33%;}
41.66%;}
50%; }
58.33%; }

115

CHAPTER 4 CASCADING STYLE SHEETS

.col-8 {width: 66.66%;}
.col-9 {width: 75%;}
.col-10 {width: 83.33%;}
.col-11 {width: 91.66%;}
.col-12 {width: 100%;}

This will create a grid layout like Figure 4-29.

Figure 4-29. Responsive Grid View Showing Column Widths

Remember the CSS file we built in the previous section. Padding and
borders should be included in the total width and height of the elements.
To enforce this, we add the following to the top of the CSS file:

*A
box-sizing: border-box;

}

116

CHAPTER 4 CASCADING STYLE SHEETS

We can add the column declarations to the bottom of the CSS file:

.col-1 {width: 8.33%;}
.col-2 {width: 16.66%;}
.col-3 {width: 25%;}
.col-4 {width: 33.33%;}
.col-5 {width: 41.66%;}
.col-6 {width: 50%;}
.col-7 {width: 58.33%;}
.col-8 {width: 66.66%;}
.col-9 {width: 75%;}
.col-10 {width: 83.33%;}
.col-11 {width: 91.66%;}
.col-12 {width: 100%;}

Now we can build the page using HTML. We can add the header and
nav bar. These two sections will span 100% across the page:

<header>
<h1> Welcome To Anna's Kitchen</h1>

 The Home of the Roast!
</header>

<nav>

 Home |

 Menu |

 Book a Table
</nav>

Next, let’s add the content and sidebar. Now for this section, we want
the content section to span eight columns across and the sidebar to span
the remaining four columns:

<content class="col-8"»
<p>

117

CHAPTER 4 CASCADING STYLE SHEETS

Every day, our expert chefs prepare a mouth-watering
. </p>

</content>

You can see the main content will span eight columns as shown in
Figure 4-30.

Figure 4-30. Responsive Grid View for the Main Content

After that, we can add the sidebar:

<sidebar class="col-4"»
<h3 align="center">Most Popular Meals</h3>
<table align="center">
<tr>
<th>Dish</th>

118

CHAPTER 4 CASCADING STYLE SHEETS

<th>Price</th>
</tr>
<tr>
<td>Roast Carvery</td>
<td>$12.99</td>
</tr>
<tr>
<td>Mixed Grill</td>
<td>$14.99</td>
</tr>
</table>
</sidebar>

This spans four columns as we can see in Figure 4-31.

Figure 4-31. Responsive Grid View for the Sidebar

119

CHAPTER 4 CASCADING STYLE SHEETS

Now what happens when you resize the browser window? You'll see
the content stretch to fill the screen (Figure 4-32).

Figure 4-32. The Content Stretched to Fill the Screen

What happens when we view the site on a phone? The view on the
phone, as seen in Figure 4-33, is a bit cramped and could do with some
breakpoints to move the sidebar underneath.

120

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-33. A Cramped View on a Phone

To do this, we must understand what a viewport is. The viewport is the
portion of the website that the user can see (Figure 4-34).

121

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-34. Viewport

A meta viewport tag gives the browser instructions on how to control
the page's dimensions and scaling (Figure 4-35):

<meta name="viewport" content="width=device-width, initial-
scale=1">

Using the meta viewport value, width=device-width instructs the page
to match the screen's width in device-independent pixels. The initial-
scale=1.0 part sets the initial zoom level when the page is first loaded by
the browser.

To provide the best experience, mobile browsers render the page at a
desktop screen of about 767-980px in width and then scale the content by
increasing font sizes and resizing the content to fit the screen.

122

CHAPTER 4 CASCADING STYLE SHEETS

Figure 4-35. The Website on Different Screen Sizes

Media queries make it possible to respond to a client browser with a
customized display for certain viewport sizes. The @media rule includes a
block of CSS properties only if a certain condition is true.

Going back to our CSS, we can style all column widths to span 100% of
the width on smartphone devices with small screens. The following code
selects any element that contains “col-” anywhere in the value of the class
attribute:

[class*="col-"] {
width: 100%;

}

This is known as a CSS attribute selector with the attribute we want to
select enclosed in square brackets |].

Here’s the media query to deal with larger screens. The min-width
media property specifies the minimum width of a specific device. So the
screen width needs to be 768px or greater. This would work well on larger
tablets such as an iPad or a laptop.

@media only screen and (min-width: 768px) {
.col-1 {width: 8.33%;}
.col-2 {width: 16.66%;}

123

CHAPTER 4 CASCADING STYLE SHEETS

.col-3 {width:
.col-4 {width:
.col-5 {width:
.col-6 {width:
.col-7 {width:
.col-8 {width:
.col-9 {width:

25%; }
33.33%;}
41.66%; }
50%; }
58.33%; }
66.66%; }
75%; }

.col-10 {width: 83.33%;}
.col-11 {width: 91.66%;}
.col-12 {width: 100%;}

properties. When should you use each one? Well, if you are designing your
layout for small smartphone screens first, then use min-width breakpoints
and work your way up. If you've designed the website for a desktop display
first, and you want to adapt the layout for smaller screens, then use max-
width and work your way down to the smallest screen.

This creates a breakpoint when the browser window is 768px wide.
You can set your breakpoints using min-width and max-width

Lab Exercises

124

1. Whatis CSS?

2. How do you include CSS in your HTML document?
Describe the three methods.

3. Whatis a selector? What are the different types and

what do they do?

4. Create anew HTML file and name it ch04.html.

5. Create a new CSS file and name it ch04.css.

10.

CHAPTER 4 CASCADING STYLE SHEETS

In the file ch04.html, add the basic structure of an
HTML document.

Link the CSS file ch04.css in your HTML document.

What is the difference between absolute and relative
measurements?

Name some absolute measurement units.

Name some relative measurement units.

Summary

Cascading Style Sheets (CSS) are used to define and
customize the styles and layouts for your web pages.

Can be included inline within an HTML element.

Can be included from an external file using <script
href= “">.

Can be included in an HTML file itself between
<script> ... </script> tags.

A type selector creates a general style for the declared
element.

A class selector is used to apply styles to a specific
HTML element and is referenced using a dot.

The ID selector targets a single element and can only
be used once per page and is referenced using a hash.

The universal selector matches every single element on
the page and is referenced using an asterisk.

Specify colors using a keyword, a hex value, or an
RGB value.

125

CHAPTER 4 CASCADING STYLE SHEETS

126

Use inch, millimeter, px, or pt for specifying absolute
measurements.

Use em or a percentage for specifying relative

measurements.

Flexbox is a layout module designed for laying out
groups of items in one dimension (using a row or
column, but not both at the same time).

A CSS grid is a two-dimensional layout feature and is
a perfect candidate for whole page layouts (using rows
and columns).

CHAPTER 5

Special Effects

Using HTML and CSS, you can add various effects to decorate your
website. These include

o Hover effects

e Buttons

¢ Rounded corners
¢ Shadows

¢ Gradients

These effects should be used sparingly as they can become irritating
and distracting if used in abundance.
However, effects can be useful to add emphasis to a section or object.

Text Effects

In this example, we are going to add a shadow effect to a heading. Using
CSS, we can style the heading using the text-shadow property:

h1 {
text-shadow: 2px 2px 2px lightgrey;
}

© Kevin Wilson 2023 127
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1_5

https://doi.org/10.1007/978-1-4842-9250-1_5#DOI

CHAPTER 5 SPECIAL EFFECTS

We can also change the text to white using the color property:

hi {

color: white;

text-shadow: 2px 2px 2px lightgrey;
}

Let’s take a look at an example. Here, we've added a text-shadow
property to the heading 1 selector as you can see in the about.css file
(Figure 5-1).

Figure 5-1. Text Shadow Property

In the web browser on the right in Figure 5-1, you can see the shadow
around the heading.

128

CHAPTER 5 SPECIAL EFFECTS

Rounded Image Corners

We can style images. We can round the corners of the image. The amount
of curve on the corner is called the border radius:

img {
border-radius: 10px;

}

Let’s take a look at an example. Here, we've added a border-radius
property to the img selector as you can see in the about.css file in
Figure 5-2.

Figure 5-2. Rounded Corners

You can see the rounded corners of the photo in the browser window
in Figure 5-2.

129

CHAPTER 5 SPECIAL EFFECTS

Buttons

We add styles to buttons. Here, we've created a button class selector. We've
set the background color of the button to orange, the text to white, plus
we've added rounded corners using the border-radius property. We've also
added a property to change the mouse pointer to a hand pointer using the
cursor property:

.button {
background-color: orange;
color: white;
border: none;
border-radius: 4px;
padding: 15px 25px;
cursor: pointer;

Next, we've added a hover state for the button. Here, we’ve set the
background color to green and the text to white whenever the mouse
pointer hovers over the button:

.button:hover {
background-color: green;
color: white;

}

Finally, we add the class to the button in the HTML document:
<button class="button">Submit</button>

Let’s take a look. At the bottom of the page in the web browser, you'll
see the button change color and the cursor change to a hand pointer when
you hover your mouse pointer over the button (Figure 5-3).

130

CHAPTER 5 SPECIAL EFFECTS

Figure 5-3. The Cursor Changes

Gradients

You can add gradients to your page (Figure 5-4). A gradient is a smooth
transition between two or more specified colors.

131

CHAPTER 5 SPECIAL EFFECTS

0 Degrees 90 Degrees

Figure 5-4. Gradients

Here, we've defined a linear gradient that goes from white to light gray
down the page:

#gradient1 {
background-image: linear-gradient(odeg, white, lightgrey);
}

Now anything we want the gradient to span, we enclose in <div> tags:

<div id="gradient1" style="text-align:center;">

</div>

Let’s take a look at an example. In Figure 5-5, we've defined a gradient
ID selector. We've added a gradient spanning from light gray to white down
the page (0 degrees).

We've also enclosed the text between the <div> tags, so we know where
the gradient will start and where it will end.

132

CHAPTER 5 SPECIAL EFFECTS

Figure 5-5. Gradients in Use

Lab Exercises

1. Whatis CSS?

2. Whatis a selector? What are the different types and
what do they do?

3. Create a new HTML file and name it ch05.html.
4. Create a new CSS file and name it ch05.css.

5. Inthe file ch05.html, add the basic structure of an
HTML document.

6. Linkthe CSS file ch04.css in your HTML document.

133

CHAPTER 5 SPECIAL EFFECTS

Summary

¢ You can add various effects to HTML elements.
e Use text-shadow to add a shadow effect to text.

o Use border-radius to round corners of images and
buttons.

e Use button:hover to create a rollover effect.

o Use linear-gradient() to create a gradient from one
color to another.

134

CHAPTER 6

Multimedia

Using the HTMLS5 specification, it is a lot easier to embed multimedia into
your website. You can easily embed video, music, animations, and sound.
Multimedia files have various file extensions.
Audio files can be .wav, .mp3, .aac, or .wma.
Video files can be .mp4, .mpg, .wmv, .webm, or .avi.
Photos and illustrations are usually .jpg, .png, or .webp.

Adding Video

Use the built-in <video>...</video> tags:

<video width="450" controls autoplay>
<source src="video.mp4" type="video/mp4">
</video>

Use the source attribute to specify the video file and format. You can
list multiple formats here, but H264 “MP4” and WEBM seem to be the
most popular.

Use the width attribute to set the width of the video window or use the
height attribute to set the height. Note, if you want to maintain the aspect
ratio of the video, you only need to specify one of the two attributes: width
or height. This prevents the video getting stretched or squashed. You can
also specify a percentage, for example, 100%, to span the video across the
whole page regardless of the browser window size - this is sometimes
useful if you are developing for different screen sizes.

© Kevin Wilson 2023 135
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1_6

https://doi.org/10.1007/978-1-4842-9250-1_6#DOI

CHAPTER6 MULTIMEDIA

If you want controls such as play, stop, and skip to appear along the
bottom of your video window, add the attribute “controls”; if not, leave the
attribute out.

If you want the video to automatically start when the page loads, add
the attribute “autoplay.” Browsers tend to block this feature, and most
videos won't start to play unless the user clicks the play button.

Try adding the code to your index.html file (Figure 6-1) and see what
happens.

Figure 6-1. Embedding a Video

If you upload video files to your web server, you'll need to have plenty
of space to store the files as well as enough bandwidth to transfer the video
to whomever visits your website.

Another method is to upload your video file to a video hosting service
such as YouTube or Vimeo. That way, your video is streamed to the user’s
device rather than downloaded first.

136

CHAPTER6 MULTIMEDIA

In Figure 6-2, I've uploaded my video to Vimeo.

Figure 6-2. Vimeo Upload

All you need to do is copy the video’s embed code and paste it into
your HTML code:

<iframe
src="https://player.vimeo.com/video/738226502?h=1d66dead64"
width="450"
height="220"
frameborder="0"
allow="autoplay;
fullscreen" allowfullscreen>

</iframe>

If you are using YouTube, once you've uploaded your video, you'll
need to copy the embed code. To do this, select “share” at the bottom of
the video on YouTube (Figure 6-3).

Figure 6-3. The YouTube Share Button

137

CHAPTER6 MULTIMEDIA

From the pop-up dialog box, select embed (Figure 6-4).

Figure 6-4. Embed

Click copy on the bottom right of the screen (Figure 6-5).

Figure 6-5. Copy the Code

Paste the code into your HTML document at the position you want
the video to appear. I'm going to paste the video after the first paragraph
(Figure 6-6).

138

CHAPTER6 MULTIMEDIA

Figure 6-6. The Video in the Website

You can adjust the size using the width and height attributes. You can
also add or remove the frame and allow autoplay and fullscreen modes.

Adding Audio

If you are adding background music or any sound to your website, make
sure it is appropriate and complements the website. There is nothing
worse than going to a website and have annoying music or sound
blaring at you.

To add audio, use the <audio>...</audio> tags:

<audio controls>
<source src= "music.mp3" type= "audio/mpeg">
</audio>

139

CHAPTER6 MULTIMEDIA

The loop attribute loops the music to play over again.

The controls attribute shows play, stop, track, and volume controls.

The autoplay attribute starts playing music automatically - do not use!
It makes websites unbearable and annoying.

Add the code to the HTML page in the position you want the audio
player to appear.

Adding Image Maps

To demonstrate how to create an image map, we're going to add a
navigation bar image to our website.

First, insert the image in an appropriate place in your code using the
 tag. A good place would be in the sidebar section:

Add the usemap attribute and add the image map name.

Now to create an image map, use the <map>...</map> tags. Give the
map a name using the name attribute. This needs to match the usemap
attribute in the tag you added earlier:

<map name = "foodmenu">
<area shape= "rect" coords = "0,0,0,0"
href = "menu.htm">
</map>

Inside the <map>...</map> tags, you need to define hotspots around
parts of the image you want the user to click.

You need to create these hotspots using a coordinate system (coords
=“x,y,x,y”). This corresponds to x&y coordinates of the top left and the
x&y coordinates of the bottom right of the hotspot within the image
dimensions.

140

CHAPTER6 MULTIMEDIA

To find these coordinates and the image dimensions, you'll need an
image editor. You can download GIMP which is a great free alternative
to Photoshop. GIMP has a pixel measuring tool which is quite useful for
this task.

www.gimp.org/downloads/

Click “Download GIMP directly.”

Load the image into GIMP. The image needs to be the same size as
itis in the HTML document, so you'll need to resize if necessary. In this
example, we set the width of the image to 220px in our HTML code.

Our sidebar is 220px wide (x) by 598px long (y) (Figure 6-7).

Figure 6-7. Resizing the Image

141

CHAPTER6 MULTIMEDIA

We need to divide the image into three sections. The first image is the
first hotspot on the image map, the second image is the second hotspot,
and the third image is the third hotspot.

To find these using GIMP, hover your mouse over the image. You'll see
a set of coordinates in the bottom-left corner of the screen (Figure 6-8).

Figure 6-8. Coordinates in GIMP

Move your mouse pointer to the bottom right of the first image and
note the coordinates (220, 202) in Figure 6-9.

142

CHAPTER6 MULTIMEDIA

Figure 6-9. Coordinates of the First Image

We can add this value to the image map:

<map name = "foodmenu">
<area shape= "rect" coords = "0,0,220,202"
href = "menu.htm">
</map>

Do the same for the other two images (Figure 6-10).

143

CHAPTER6 MULTIMEDIA

Figure 6-10. Image Coordinates

You'll end up with something like this:

<map name = "foodmenu"»
<area shape= "rect" coords
"menul.htm"
<area shape= "rect" coords
"menu2.htm">
<area shape= "rect" coords
"menu3.htm">

</map»

"0,0,220,202" href =

"0,202,220,395" href =

"0,395,220,596" href =

Now when you click the image in the sidebar, you'll be taken to the
HTML page specified in the href attribute (Figure 6-11).

144

CHAPTER6 MULTIMEDIA

Figure 6-11. The Final Result

Lab Exercises

1. Create anew HTML file.

2. Where do you store video and audio files to be

included on a web page?

3. Add avideo from YouTube or one of your own
videos to the web page.

4. Underneath, add an MP3 audio recording.

145

CHAPTER6 MULTIMEDIA

Summary

146

Use the <video> tag to include a video on your
web page.

If you're including a video from YouTube, copy and
paste the embed code from the YouTube video.

Use the <audio> tag to include an audio recording such
as music or other audio.

CHAPTER 7

HTML Forms

A form is an HTML document used to collect user input (Figure 7-1). The
information entered by the user is usually sent to a server and is processed
by a script.

Figure 7-1. A Form

An HTML form contains fields for name, password, telephone number,
and email address, as well as larger fields to capture messages. You can
also add radio buttons, select boxes, and a submit button.

© Kevin Wilson 2023 147
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1_7

https://doi.org/10.1007/978-1-4842-9250-1_7#DOI

CHAPTER7 HTML FORMS

Adding Forms

Forms provide a way to acquire information from the user.
Use the tags:

<form action=" ">...</form>

Use the action attribute to point to a PHP or CGI script to process the
inputted data.
Inside the <form> tags, you need to add some input elements.

Input Types

Input types allow you to gather information from the user and can be

o Textfield types such as

o text

o tel

¢ email
o url

e password
¢ Radio button
e Checkbox

o Rangesslider

e Button
e submit
e reset
o File

148

CHAPTER 7 HTML FORMS

Use the <input> element to define your input types:

<input type = name = >eo. </input>

The type attribute indicates the type of input such as text field, radio
button, checkbox, etc.

The name attribute specifies the name of an <input> element and can
be referenced in a JavaScript or to identify the inputted data after a form is
submitted for processing.

You can also add an id attribute that assigns an identifier that allows a
JavaScript or CSS ID selector to easily access the <input> element.

Text Fields

A text field is an input type and can accept text, telephone numbers, email
addresses, or passwords. Each field type is preset to expect a certain format
and type of text. For example, the email type expects to find an @ sign
entered indicating an email address. A password type masks the letters
with *** as you type them in.

<input type="text" name="firstname"> </input>

Text Area

This is a text field that will allow multiple lines of text and is best used
when accepting paragraphs of text such as a message on a contact form
(Figure 7-2):

<textarea name= "message" rows= "5" cols= "30">

</textarea>

149

CHAPTER7 HTML FORMS

Figure 7-2. A Message

Radio Buttons

These allow the user to select from preset options:

<input type= "radio" name= "gender" value= "female">
</input>

For example, see Figure 7-3.

Figure 7-3. A Radio Button

Checkbox

This creates a set of options for the user to choose from (Figure 7-4):

<input type="checkbox" name="mainoptioni" value="Starter"»
<label for=" mainoption1"> I will have a starter</label>

Figure 7-4. A Checkbox

150

CHAPTER 7 HTML FORMS

Select List

This creates a drop-down list of preset options for the user to choose from
(Figure 7-5):

<select>
<option value= "US">United States</option>
<option value= "UK">United Kingdom</option>
<option value= "EU">Europe</option>
</select>

Figure 7-5. A Drop-Down List

Labels

Labels are used to label the fields in your form (Figure 7-6):

<label for = "name"> Name: </label>

Figure 7-6. A Label

The “for” attribute must match the name of the field you're labeling.
For example, the preceding label is labeling the following text field:

<input type= "text" name= "name" width= "350"> </input>

151

CHAPTER7 HTML FORMS

Submit Button

The submit button sends all form values to a form handler which is usually
a server-side script:

<input type="submit" value="Submit">
or
<button type="submit">Submit</button>

You'll end up with something like Figure 7-7.
Figure 7-7. A Submit Button

Building a Form

Let’s go back to our website project and create a table booking form. Here,
we've added some code to create our form.

The form code goes between the <form> tags in the HTML body.
Inside the form tag, with the action attribute we specify the script we want
to execute when the user clicks the submit button. This would be a PHP
or Python script that is executed on the server (in this example, we'll use a
PHP script). Set the send method to post and give the form an ID. See later.

<form action="book.php" id="form" method="post">

Next, we've added a label for the name field followed by the input field
itself. Inside the input field, set the type (text, email, or password), then
give the field a name and ID:

<label for="firstname">First Name</label>
<input type="text" id="firstname" name="firstname">

152

CHAPTER 7 HTML FORMS

Do the rest for the other fields.

The IDs are used later in the Python or PHP script that processes the
form data.

We end up with something like Figure 7-8.

Figure 7-8. A Form in the Website

Styling a Form

Notice that the form looks a little rough. We can use our CSS selectors to
style the form and make it look a little better.

To do this, we can add our CSS styles to our index.css file we were
using in the previous chapters.

First, we need to style the input boxes. In this form, we have three
different types of input box.

Input with plain text type

input[type=text]

153

CHAPTER 7 HTML FORMS

Input with an email type (this checks for a valid email address)
input[type=email]

A large text field
textarea

We want all these three types to have the same style, so we can group
them together. We want the width to span the whole window with 12px
of padding around the edges to move the form away from the edge of the

browser window:

input[type=text], input[type=email], textarea {
width: 100%;
padding: 12px;
border: 1px solid grey;
border-radius: 4px;
margin-top: 5px;
margin-bottom: 10px;

I've also added a thin border around each input field and colored it
gray with a rounded edge (or border radius) on the corners.

I've added 5px at the top of each box (margin-top) and 10px below
each box (margin-bottom) to separate them vertically on the form.

Next, we can style the submit button. We can do this with another

input type:

input[type=submit] {
background-color: orange;
color: white;
padding: 15px;

154

CHAPTER 7 HTML FORMS

border: none;
border-radius: 4px;
cursor: pointer;

}

To match the style of the website, I've changed the background color of
the button to orange with white text.

I've also added 15px of padding around the inside of the button,
removed the border, and added the 4px to border-radius to make the edges
of the button rounded.

The property cursor: pointer changes your mouse pointer to a hand
pointer when you hover your mouse over the button.

Finally, we need to create a container to hold the form. We can do this
using the division <div> tag in the HTML code:

<div class="formcontainer">
We can style the form container in the CSS code like we did earlier:

.formcontainer {
background-color: whitesmoke;
padding: 20px;

}

Here, I've created a container with a gray background and a padding of
20px around the form to move it away from the rest of the page.

Once we've done that, we'll end up with something like Figure 7-9.
Notice that the form looks a lot better.

155

CHAPTER7 HTML FORMS

Figure 7-9. A Formatted Form

Processing the Form Data

Next, we need to add the functionality to the form (i.e., what happens
when you click submit).

The form is usually processed on the server with a PHP or Python
script and will take the details entered and send them to an email address.
In this example, we are going to use a PHP script to process the form data.

Configure the Web Server to Execute Scripts

Now in order for this to work, you'll need PHP support installed on your
web host (contact your hosting provider for details), or if you're using the
Abyss Web Server we installed in Chapter 1, you'll need to install PHP
scripting. To do this, go to the following website:

aprelium.com/downloads/

156

https://doi.org/10.1007/978-1-4842-9250-1_1

CHAPTER 7 HTML FORMS

For Windows, download the preconfigured PHP package for Windows
(64-bit) (Figure 7-10).

Figure 7-10. Installing PHP

Go to your downloads folder, then double-click PHP8xx-x64.exe. Run
through the setup and click “Next” to begin (Figure 7-11).

Figure 7-11. Installing PHP

Accept the license agreement, then click “Install.” Make a note where
the software is going to be installed (Figure 7-12), in this case, C:\Program
Files\PHP8.

157

CHAPTER7 HTML FORMS

Figure 7-12. Choosing Where to Install

Next, open your web browser and navigate to the server’s console.
Enter the server’s admin password.

127.0.0.1:9999

In the hosts table, click configure (Figure 7-13).

Figure 7-13. Configuring the Console

158

CHAPTER 7 HTML FORMS

Select Scripting Parameters (Figure 7-14).

Figure 7-14. Scripting Parameters

Check Enable Scripts Execution, then click add in the Interpreters table
(Figure 7-15).

Figure 7-15. Interpreters Table

159

CHAPTER7 HTML FORMS

Set Interface to FastCGI (Local - Pipes). In the Interpreter field, click
browse, then navigate to the directory where you have installed PHP 8
(Figure 7-16). Select php-cgi.exe. Set the type to standard, then check “Use
the associated extensions to automatically update the script paths.”

Figure 7-16. Seiting Up

Click “Add” in the “Associated Extensions” table, then enter php in the
extension field. Click “OK,” then click “OK” again (Figure 7-17).

Figure 7-17. Associated Extensions Table

Now we need to add the php extension to the index files.
Back on the main screen, click “Index Files” (Figure 7-18).

160

CHAPTER 7 HTML FORMS

Figure 7-18. Select Index Files

Click “Add” on the bottom right of the “Index Files” section
(Figure 7-19).

Figure 7-19. Index Files Section

161

CHAPTER7 HTML FORMS

Enter index.php, then click “OK.” Then click “OK” again (Figure 7-20).

Figure 7-20. Entering index.php

Back on the main screen, click “Restart” (Figure 7-21).

Figure 7-21. Click Restart

Executing the Script

Now when we click the submit button, the server will execute a PHP script
called book.php (Figure 7-22).

162

CHAPTER 7 HTML FORMS

Figure 7-22. The Script Executed After Submit Is Clicked

I've included a sample PHP script called book.php that you can use to
try out the form as follows:

<html>
<head>

<title> Thanks for your booking</title>
</head>
<body>

<h1> Thank you for your booking</h1>
<p>Hi <?php echo $_POST["firstname"]; ?>

163

CHAPTER7 HTML FORMS

thanks for booking a table. We will send confirmation to
your email address

<?php echo $_POST["emailaddr"]; ?»</p>

<p>Your message:</p>

<?php echo $_POST["msg"]; ?»

</body>
</html>

Submission Method

There are two methods to send the form’s data to the server: get and post.

In this demonstration, we have a PHP script that executes when the
user clicks the “submit” button and sends the data entered into the form
fields back to the server. First, we’ll execute the script using the “get”
method, then we'll execute the same script using the “post” method, so
you can see the differences in the header inspector shown on the bottom
right of the screenshots.

Get

The “get” method appends the inputted data to the requesting URL
separated by a “?” (Figure 7-23). This is called a query string.

164

CHAPTER 7 HTML FORMS

Figure 7-23. Query String

You can see the data appended to the URL of the script in the
preceding illustration and the query string attributes in the header
inspector.

This method should never be used to submit sensitive information like
passwords as it is clearly visible on the page URL.

Post

Using the “post” method, all the data is sent with the HTTP headers of the
processing script rather than through the URL. Notice that the URL in the
address bar at the top of the browser is clean (Figure 7-24).

165

CHAPTER7 HTML FORMS

Figure 7-24. Use of the Post Method

You can see the data appended to the header of the script in the
preceding illustration.

Lab Exercises

1. Create an HTML form to accept some information

from a user such as name, email, etc.
2. Add some styling to make the form look a bit better.

3. What are the submission methods used to pass the
data entered into the form to the server? Which
should you use?

4. What is a query string?

5. How s the form data processed?

166

CHAPTER 7 HTML FORMS

Summary

wn»

Use <form action="">...</form> to create a form and

specify the script to process the data.

The “get” submission method appends the inputted
data to the requesting URL.

The “post” method sends the data with the HTTP
headers of the processing script rather than through
the URL.

167

CHAPTER 8

Introduction
to JavaScript

Originally named LiveScript, JavaScript was developed by Brendan Eich at

Netscape in the mid-1990s. It was later renamed JavaScript in 1995.
JavaScript is an interpreted, object-based, client-side scripting

language that allows you to create dynamic content on a web page. You

can animate images, validate data, and create interactive elements. In

other words, JavaScript adds behavior to web pages, and it is supported by

most modern web browsers such as Chrome, Firefox, Edge, and Safari.
There are three ways you can add JavaScript to a web page:

1. You can embed the code between <script> tags
within your HTML document. You can add this
to the <head> or <body> section of your HTML
document. In the example in Figure 8-1, we’ve
added the JavaScript code between the <script> tags
in the header.

© Kevin Wilson 2023 169
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1_8

https://doi.org/10.1007/978-1-4842-9250-1_8#DOI

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

Figure 8-1. Adding JavaScript

2. You can save the JavaScript code in a separate file
and link it to your HTML. This is useful for larger
projects where you have multiple HTML documents
using the same JavaScript functions.

In this example, the JavaScript code is saved in the
file script.js. We include the JavaScript file using the
src attribute in the opening <script> tag. We can add
this line in the header of the HTML file (Figure 8-2).

170

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

Figure 8-2. Adding JavaScript

3. You can also place the JavaScript code directly
inside an HTML tag. This is known as inline code.

 Click
Here

171

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

JavaScript Syntax

A JavaScript program called a script is a list of statements that contain
constructs and commands that perform actions. Let’s take a look at some
of the basic building blocks of a JavaScript program.

Statements

A statement is a piece of code that performs an action and is the basic
building block of a JavaScript program. Use a semicolon to mark the end of
a statement:

document.getElementById("desc").innerHTML = "This is a test";

Blocks

A block is a sequence of statements that are often executed together and
is commonly used in control flow constructs such as an if statement or in
while and for loops. A block is grouped by a pair of curly brackets { }:

if (some condition) {
statement 1;
statement 2; }Code block
statement 3;

}

Identifiers

An identifier is a name you choose for variables, parameters, and
functions. Here, we have declared a variable called firstNum:

let firstNum = 5;

172

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

Identifiers also identify function names. Here, we have a new function
called addNum:

function addNum(ni, n2) {
return nl + n2;

}

Keywords

When using JavaScript, there are reserved keywords that have specific
uses (Figure 8-3). Because of this, you cannot use any of the keywords as
identifiers or property names.

Figure 8-3. JavaScript Keywords

Comments

Comments are ignored when the program is executed; however, you
should always comment your code so anyone else can understand its
function. You can add comments by enclosing the comment between
/*and*/.

173

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

/* This is a multiline comment and
is often used to describe a section
of code. */

If you just want to comment one line, use a //.

// this is a single-line comment

First Program

Let’s take a look at an example. Here is a simple HTML page. We have
enclosed the JavaScript code inside the <script> tags:

<!DOCTYPE html>
<html>

<body>
<h1>Welcome to JavaScript</h1>

<p id="desc"></p>

<scripty
document.getElementById("desc").innerHTML = "This is
a test";

</script>

</body>
</html>

Let’s put the JavaScript code into an HTML document (Figure 8-4).
At the top, we’ve added a heading. We’ve also added the JavaScript code
between the <script> tags in the body of the HTML document.

174

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

Figure 8-4. Adding JavaScript Code to the HTML

Here, we can see the getElementBylId() method assigns the text we
specified to the object <p> in the document. This is how we can use
JavaScript to manipulate an HTML document.

The getElementByld method displays text output to the browser
window. “So what,” you say, “HTML already does that.” Yes, it does, but
using JavaScript you can do things you can’t do with simple HTML. For
example, you can display text or options based on variables or certain
conditions. You can also use JavaScript to add interactivity and content
validation to an otherwise static website.

Lab Exercise

In this exercise, we’re going to create a small HTML form with a JavaScript
function that adds two numbers and displays the result.

175

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

First, we need to build the form. Note here that we are not using a form
submit handler as we don’t need to use an external script to process the
data, we just want to execute a JavaScript function:

<form>

Next, we need to create the fields. We’ll add a label, then a number
input type field - one with the ID firstnum and the second ID secondnum.
These IDs will be used by the JavaScript function later. The
 tag just
breaks the text onto a new line:

<label for="firstnum">First Number: </label>
<input type="number" id="numi">

<label for="secondnum">Second Number: </label>
<input type="number" id="num2">

Now we need an HTML element we can use to display the result. The
span element is a generic container for inline content:

Next, we add a button for the user to click to add the values:
<input type="button" value="Add"

Now when the user clicks the button, this raises an onclick event. We
need to tell the onclick event to run our function when the user clicks the
button. So in the line we added earlier, we can add an onclick event and
call the function:

<input type="button" value="Add" onclick="add();">

We’ll end up with something like Figure 8-5.

Figure 8-5. HTML Form with JavaScript Function

176

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

After we’ve created the HTML page, we need to add the JavaScript. In
this case, I'm going to add the JavaScript to the actual HTML page. We do
this using the <script> tags.

Inside the script tags, first, we declare our function to add the
numbers:

<script>
function add () {

Next, we need to create a couple of variables to store the numbers
so we can work on them. To do this, we need to retrieve the number that
was entered into the fields on the form (num1l and num2). We can use
the getElementByld method to retrieve the value from num1 and num2
(Figure 8-6).

Figure 8-6. Retrieving the Numbers

Because the values entered into the form are text (a string), we need
to convert these to a whole number (or integers). To do this, we use the
parselnt() function. After conversion, these values are assigned to the
variables firstnum and secondnum:

let firstnum = parseInt(document.getElementById("num1").
value);
let secondnum = parseInt(document.getElementById("num2").
value);

177

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

Next, we need to add the two numbers together and assign the answer
to the variable result:

let result = firstnum + secondnum;

We can write the value of result to the HTML span element that has the
ID “res™:

document.getElementById("res").innerHTML = result;

Here, we see the value of result is assigned to the HTML value of the
span element on the web page (Figure 8-7).

Figure 8-7. Value Assigned to HTML

Let’s see how the code works when we open it in a browser. When
you enter two numbers into the fields, once you click the button the
add() function is called. The first two lines of the function get the values
from the form fields (e.g., 2). Next, the values are converted to integers
(using parselnt()) and assigned to firstnum and secondnum, respectively.
The values are then added together, and the answer is assigned to result
(Figure 8-8).

178

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

Figure 8-8. Values Assigned to HTML

The value in result is then assigned to the HTML value of the span
element on the HTML page. This is what displays the result (in this
example, “47).

Try it out.

Summary

o Embed the JavaScript code between <script>...</
script> tags.

e Include an external script file using the src attribute in
the opening <script> tag.

<script src= “...”></script>

179

CHAPTER 8 INTRODUCTION TO JAVASCRIPT

e A semicolon marks the end of a statement.
e querySelector
e querySelectorAll

o getElementByld

180

CHAPTER 9

Content Management
Systems

A content management system (or CMS) is a software application that
enables you to create, edit, and store digital content. In other words, a CMS
is a piece of software that runs on a web server and allows you to easily
create, edit, and manage content published on a website.

The website data is stored in a database. The CMS platform takes care
of all the technical aspects around building and managing a website. The
end user can use a WYSIWYG text editor that looks like a word processor to
create, publish, and edit content, without the need for coding experience.
However, basic HTML and CSS knowledge is an advantage.

Most CMS platforms come with a selection of predesigned templates
called themes that you can use to quickly customize the appearance of
your site. You can also download countless other themes or even develop
your own.

Nowadays, this is the most common way to build a website rather than
using static HTML pages.

WordPress is by far the most popular content management system and
powers roughly 43% of the websites on the Internet; however, there are
others such as Drupal, Joomla, and Umbraco. You can find more detailed
information on using these platforms on the following websites:

e wordpress.org

e drupal.org

© Kevin Wilson 2023 181
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1_9

https://doi.org/10.1007/978-1-4842-9250-1_9#DOI

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

e joomla.org
e umbraco.com

Rather than creating static HTML pages, the website content is stored
in a database (usually MySQL). The pages that you see when you visit
the website are generated dynamically and formatted according to the
theme used.

Using a CMS such as WordPress, websites can be created very
quickly with the least amount of technical or programming expertise.
Developers can develop plugins and themes for the website, and editors
and publishers can log in and edit the content using a front end that looks
similar to a word processor without the need to deal with code.

In Figure 9-1, we can see an editor on the back end of a WordPress
website. The user can log in and add pages and blog posts to the site
without having to use any code.

Figure 9-1. WordPress Back End

When someone visits the website, they’ll see the published content
(Figure 9-2). This is called the front end.

182

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-2. WordPress Front End

Set Up WordPress on Our Server

If you want to experiment with WordPress, you can download it from the
following website:

wordpress.org/download/

Click “Download WordPress.” This will download a zip file to your
downloads directory.

You’ll need to install PHP and configure it as we did in the “Configure
the Web Server to Execute Scripts” section in Chapter 7.

Next, install MySQL. To do this, download the installer from the
MySQL website:

dev.mysql.com/downloads/installer/

On the downloads page, next to “Windows (x86, 32-bit), MSI Installer,
5.5M,” click “Download” (Figure 9-3).

183

https://doi.org/10.1007/978-1-4842-9250-1_7

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-3. MySQL Install Page

Run the installer you just downloaded. You'll find it in your downloads
folder. Run through the setup. When you get to the “Setup Type” screen,
select “Server only,” click “Next,” then “Execute” (Figure 9-4).

Figure 9-4. Setup Type Menu
184

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Select “Development Computer” from the “Type and Networking”
options (Figure 9-5). Click “Next.”

Figure 9-5. Type and Networking Options Menu

On the “Accounts and Roles” screen, enter a root password
(Figure 9-6). This is the password you’ll use to create and administer your
databases, so don’t forget it. Click “Next” to continue.

185

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-6. Entering a Root Password

Click “Next” on the “Windows Service” screen (Figure 9-7). You can
leave these on the defaults.

186

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-7. Windows Service Menu

Then click “Execute” to begin installation (Figure 9-8).

187

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-8. Apply Configuration Menu

Allow the software to install.
Now let’s create our database. From the start menu, scroll down to
“MySQL,” then click “MySQL Command Line Client” (Figure 9-9).

188

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-9. MySQL Command Line Client in the Start Menu

Enter the root password you chose when you installed the MySQL
server (Figure 9-10).

Figure 9-10. Enter the Root Password

189

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Now we need to create the database username that the WordPress site
will use to connect to the database (Figure 9-11).

Figure 9-11. Command Line Client

Type the following at the MySQL command prompt:
create user if not exists 'dbu@localhost' identified by '12#'

This will create a user called dbu with a password of 12#. This is a
simple example to demonstrate, but you should use a strong password
instead.

Now we need to create the database. Type the following at the MySQL
command prompt:

Create database if not exists 'mydb';

This will create a new database called mydb (Figure 9-12). Again, you
should create a meaningful name for your database.

190

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-12. Creating a Database

Finally, we need to give permission to the user dbu we created earlier.
Type the following line:

grant all privileges on mydb.* to ‘dbu@hostname ’;

Here, we’re adding all privileges that WordPress needs to our user dbu
to be able to access and use the mydb.

Next, we need to install WordPress.

Open file explorer, navigate to your downloads folder, right-click the
WordPress zip file you downloaded earlier, and select “Extract All” from
the pop-up menu (Figure 9-13).

191

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-13. Extract the WordPress Zip

Enter the directory where the htdocs files for your web server
are saved. When using Abyss, it will be C:\Abyss Web Server\htdocs
(Figure 9-14).

192

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-14. Select a Destination in the Web Server

Once the files have been extracted, open your web browser and
navigate to

127.0.0.1/wordpress
Or if it doesn’t work, try

127.0.0.1/wordpress/wp-admin/setup-config.php

193

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Run through the setup. Select your language, scroll down, then click
“Continue” (Figure 9-15).

Figure 9-15. Selecting a Language

Make sure you have the database name, username, and password you
created earlier. In this example, it will be

Database name: mydb
User: dbu
Password 12#

Note, don’t use simple passwords like this in a live website, use
something stronger. I've just simplified the password so it’s easier to
understand.

194

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-16. WordPress Setup

Click “Let’s go!” (Figure 9-16).
Enter the details into the fields (Figure 9-17).

Figure 9-17. Filling Out the Fields

195

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Click “Submit.”

Enter an administrator username and password. These are the
details you’ll use to sign in to WordPress to create and edit your website
(Figure 9-18). Click “Install WordPress.”

Figure 9-18. Setting Up the Administrator Information

Once WordPress is installed, click “Log In” (Figure 9-19).

196

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-19. LogIn

Enter the username and password you created when you installed
WordPress (Figure 9-20).

Figure 9-20. Enter Your Username and Password

You’ll land on the wp-admin dashboard (Figure 9-21).

197

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Figure 9-21. Wp-Admin Dashboard

You can access your site from
127.0.0.1/wordpress

For the administrator back end
127.0.0.1/wordpress/wp-admin

Have a look around WordPress and see how it works. Try some themes
on the appearance tab on the left-hand side (Figure 9-22).

Figure 9-22. Appearance Options
198

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Try adding some pages using the pages tab.

Web Development Frameworks

A web framework is a software platform for developing web applications
and websites. These frameworks offer a wide range of prewritten
components, code snippets, and application templates that can be used to
develop web services and other web resources.

There are two types of frameworks - client side (front end) and server
side (back end).

Front-end frameworks such as React and Angular are used to design
the user interface of a website or application - the bit you can see when
you visit the site. The front-end frameworks are mostly based on JavaScript,
HTML, and CSS.

Back-end frameworks such as Flask and ASP.NET are used to design
the hidden part of the app or website that is responsible for database
management, security, URL routing, and page generation. These
frameworks are based on Python, .NET, Ruby, Java, and PHP.

Another framework that is both a front end and a back end is Django,
which is a prominent Python framework that is used by developers and
businesses.

For more information on these frameworks, take a look at the websites
listed in Table 9-1.

199

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Table 9-1. Framework Websites

Framework Website

Django www.djangoproject.com
Flask flask.palletsprojects.com
ASP.NET dotnet.microsoft.com
Angular angular.io

React reactjs.org

Summary

200

A content management system (or CMS) is a software
application that enables you to create, edit, and store
digital content.

WordPress is by far the most popular content
management system and powers roughly 43% of the
websites on the Internet; however, there are others
such as Drupal, Joomla, and Umbraco.

Using a CMS such as WordPress, websites can be
created very quickly with the least amount of technical
or programming expertise. Developers can develop
plugins and themes.

You can download it from wordpress.org/download/.

You can download MySQL from mysql.com/
downloads/windows/installer/.

A web framework is a software platform for developing
web applications and websites.

http://www.djangoproject.com

CHAPTER9 CONTENT MANAGEMENT SYSTEMS

Front-end frameworks such as React and Angular
are used to design the user interface of a website or
application.

Back-end frameworks such as Flask and ASP.NET are
used to design the hidden part of the app or website
that is responsible for database management, security,
URL routing, and page generation.

201

APPENDIX A

HTML Element
Reference

A

<l----> This tag is used to apply a comment in an
HTML document

<IDOCTYPE> This tag is used to specify the version of ~ <!DOCTYPE html>
HTML

<a> It is termed as the anchor tag, and it link
creates a hyperlink or link

<abbr> Defines an abbreviation for a phrase or <abbr title="full”>
longer word abbreviation </abbr>

<area> Defines the area of an image map <area shape="rect”

coords=" " href="">
<article> Defines the self-contained content <article> ... </article>
<aside> Defines content aside from the main <aside> ... </aside>

content. Mainly represented as a sidebar

<audio> Used to embed sound content in an HTML <audio controls>
document <source src=""
type="audio/mpeg”>
</audio>
© Kevin Wilson 2023 203

K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1

https://doi.org/10.1007/978-1-4842-9250-1#DOI

APPENDIXA HTML ELEMENT REFERENCE

 Used to make text bold

<blockquote> Used to define content taken from another

source

<body> Used to define the body section of an HTML
document

 Used to apply a single line break

<button> Used to represent a clickable button

 ...

<blockquote cite=" ">
Quote...
</blockquote>

<body> ...</body>

A line of text

<button type = “">
button, reset, submit

C

<canvas> Used to provide a graphics space within a web
document

<caption> Used to define a caption for a table

<center> Used to align the content in the center

<cite> Used to define the title of a work, book, website,
etc.

<code> Used to display a part of programming code in an

HTML document

<canvas> ...
</canvas>

<caption> ...
</caption>

<center> ...
</center>

<cite> ... </cite>

<code> ... </code>

204

D

APPENDIXA HTML ELEMENT REFERENCE

<datalist> Used to provide a predefined list for input <datalist id=" ">
options <option value=" ">
</datalist>
<dd> Used to provide a definition/description of a term <dd> ... </dd>

<details>

<dfn>

<dialog>

<div>

<dl>

<dt>

in a description list

Defines a text which has been deleted from the ...
document

Defines additional details which a user can <details> ...
either view or hide </details>

Used to indicate a term which is defined withina <dfn> ... </dfn>
sentence/phrase

Defines a dialog box or other interactive <dialog open> ...
components </dialog>

Defines a division or section within an HTML <div class=" "> ...

document </div>
Used to define a description list <dl> ... </dl>
Used to define a term in a description list <dt> ... </dt>

<embed>

Used to emphasize the content applied ...
within this element

Used as an embedded container for type <embed type = “” src =
text/html, image/jpg, video/mp4 width=" " height=* ">

205

APPENDIXA HTML ELEMENT REFERENCE

F

<fieldset> Used to group related elements/labels <fieldset>
within a web form <legend> ... </legend>
</fieldset>

<figcaption> Used to add a caption or explanation for <figcaption> ...

the <figure> element </figcaption>

<figure> Used to define the self-contained <figure> ... </figure>
content and is mostly referenced as a
single unit

<footer> Defines the footer section of a web <footer> ... </footer>
page

<form> Used to define an HTML form <form action = “ ” method

="“post”> ... </form>

H

<h1>to <h6> Defines headings for an HTML document from levels 1-6

<head> Defines the head section of an HTML document

<header> Defines the header of a section or web page

<hr> Used to apply a thematic break between paragraph-level elements
<html> Represents the root of an HTML document

206

APPENDIXA HTML ELEMENT REFERENCE

<i> Used to represent a text in some different voice <i> ... </i>

“wn

<iframe> Defines an inline frame which can embed other <iframe src=

content title=""> ...
</iframe>
 Used to insert an image within an HTML <img src="“" width
document ="“"height="">
<input> Defines an input field within an HTML form. <input type="text”

Types include text, tel, email, password, button, id=" " name=" ">
submit, checkbox, radio, etc.

<ins> Represents text that has been inserted withinan <ins> ... </ins>
HTML document

<kbd> Used to define keyboard input <kbd> ... </kbd>

L

<label> Defines a text label for the input <label for =“ " > ... </label>
field of form

 Used to representitemsinalist ...

<link> Links to an external resource such <link rel="stylesheet” type="text/css”
as a CSS file href=""/>

207

APPENDIXA HTML ELEMENT REFERENCE

<main> Represents the main content of an
HTML document

<map> Defines an image map with active areas

<mark> Represents a highlighted text

<meta> Defines metadata of an HTML document
Name = description, keywords, author,
viewport

<meter> Defines scalar measurement with
known range or fractional value

<main> ... </main>

<map name=" ">
<area shape="rect”
coords=" " href="">
</map>

<mark> ... </mark>

<meta charset="UTF-8">
<meta name=" " content=" ">

<meter id=" " value=" " min="
” maX:“ ”>

</meter>

<nav> Represents a section of a page to
represent navigation links

<noscript> Provides alternative content if a script
type is not supported in a browser

<nav> ... </nav>

<noscript> JavaScript not
supported! </noscript>

208

APPENDIXA HTML ELEMENT REFERENCE

<object> Used to embed an objectinan <object data=" " width=""
HTML file height=" "> </object>

 Defines an ordered list of items ...

<optgroup> Used to group the options of a <optgroup label=" ">

drop-down list <option value=""> ...
</option>
<option value=""> ...
</option>
</optgroup>
<p> Represents a paragraph in an HTML <pstyle=""> ... </p>
document
<pre> Defines preformatted text in an HTML <pre> ... </pre>
document

<progress> Defines the progress of a task within an <progress id=" " value=

HTML document max="">
</progress>
<> Defines a short inline quotation <Q>...</Q>

209

APPENDIXA HTML ELEMENT REFERENCE

<S> Renders text which is no longer correct or <> ... </s>
relevant

<samp> Used to represent a sample output of a <samp> ... </samp>
computer program

<script> Used to declare the JavaScript withinan <script>
HTML document .

</script>

<section> Defines a generic section for a document <section> ... </section>

<select> Represents a control which provides a <select name=""
menu of options id="">

<option value=" ">
</option>
</select>

<small> Used to make the text font one size <small> ... </small>
smaller than a document’s base font size

<source> Defines multiple media resources <source src=""
for different media elements such as type="audio/mpeg”>
<picture>, <video>, and <audio>

 Used for styling and grouping inline ...
elements

<strike> Used to render strikethrough text (not <strike> ... </strike>
supported in HTML5)

 Used to define important text ...

210

(continued)

APPENDIXA HTML ELEMENT REFERENCE

<style>

<Sub>

<summary>

<sup>

<svg>

Used to contain CSS style information for

an HTML document

Defines a text which displays as a

subscript text

Defines a summary which can be used

with the <details> tag

Defines a text which represents as a

superscript text

Used as a container of SVG (Scalable

Vector Graphics)

<style>
h1 {color:blue;}
</style>

_{...}

<summary> ...
</summary>

^{...}

<svg width=
height="">

</svg>

T

<table>

<tbody>

<td>

<template>

Used to present data in tabular form or to
create a table within an HTML document

Represents the body content of an HTML
table and used along with <thead> and

<tfoot>

Used to define cells of an HTML table

which contains table data

Used to contain the client-side content
which will not display at the time of
page load and may render later using

JavaScript

<table> ... </table>

<tbody> ... </thody>

<td> ... </td>

<template> ... </
template>

(continued)

211

APPENDIXA HTML ELEMENT REFERENCE
<textarea> Used to define multiple-line input, such as <textarea id=" " name="
comment, feedback, review, etc. ” rows=" " cols=" ">
</textarea>
<tfoot> Defines the footer content of an HTML <tfoot> ... </tfoot>
table
<th> Defines the head cell of an HTML table <th> ... </th>
<thead> Defines the header of an HTML table. <thead> ... </thead>
Used along with <tbody> and <tfoot>
tags
<time> Used to define date/time within an HTML ~ <time
document datetime="2022-02-24
21:00">
<title> Defines the title or name of an HTML <title> ... </title>
document
<tr> Defines the row cells in an HTML table <tr> ... </tr>

U

<u> Used to render enclosed text with an underline <u> ... </u>

 Defines an unordered list of items ...

212

APPENDIXA HTML ELEMENT REFERENCE

<var> Defines a variable name used in mathematical <var> ... </var>
or programming context

<video> Used to embed a video content with an HTML <video width=""
document height="" controls>

</video>

W

<wbr> Defines a position within text where a break ~ <wbr> ... </wbr>
line is possible

213

APPENDIX B

CSS Selector
Reference

A

accent-color Specifies an accent color for user accent-color: Blue;
interface controls

align-content Specifies the alignment between the align-content: center
lines inside a flexible container when | start | end | normal |

the items do not use all available stretch | baseline;
space
align-items Specifies the alignment for items align-items: center | start
inside a flexible container | end | normal | stretch |
baseline;
align-self Specifies the alignment for selected align-self: center | start
items inside a flexible container | end | normal | stretch |
baseline;
all Resets all properties (except unicode- all: initial | inherit | unset;

bidi and direction)

© Kevin Wilson 2023 215
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1

https://doi.org/10.1007/978-1-4842-9250-1#DOI

APPENDIXB CSS SELECTOR REFERENCE

background-
color

background-
image

background-
origin

background-
position

background-
repeat

background-

size

border

border-color

border-spacing

Specifies the background
color of an element

Specifies one or more
background images for an
element

Specifies the origin position
of a background image

Specifies the position of a
background image

Sets if/how a background
image will be repeated

Specifies the size of the
background images

A shorthand property for
border-width, border-style,
and border-color

Sets the color of the four
borders

Sets the distance between

the borders of adjacent cells.

Use length to specify size

background-color: Grey

background-image: url(“...”);

background-origin: padding-box |
border-box | content-box | initial |
inherit;

background-position: left top | left
center | left bottom | right top |
right center | right bottom | center
top | center center | center bottom

background-repeat: repeat |
repeat-x | repeat-y | no-repeat |
initial | inherit;
background-size: auto | length |
cover | contain | initial | inherit;

border: border-width border-style
border-color | initial | inherit;

border-color: Red;

border-spacing: length | initial |
inherit;

216

(continued)

APPENDIXB CSS SELECTOR REFERENCE

border-style

border-width

bottom

box-shadow

Sets the style of the four border-style: none | hidden | dotted

borders | dashed | solid | double | inherit;
Sets the width of the four border-width: length I initial |
borders. Use length to inherit | medium | thin | thick;
specify size

Sets the element’s position bottom: auto | length | initial |
from the bottom of its parent inherit;
element. Use length to

specify size
Attaches one or more box-shadow: none | h-offset
shadows to an element v-offset blur spread color;

C

@charset

clear

color

column-count

Specifies the character encoding used @charset “UTF-8”;
in the style sheet

Specifies what should happen with clear: none | left | right |
the element that is next to a floating ~ both [initial | inherit;
element

Sets the color of text color: Green;

Specifies the number of columns an ~ column-count: 3;
element should be divided into

column-fill Specifies how to fill columns, balanced column-fill: balance |
or not auto | initial | inherit;
column-span Specifies how many columns an column-span: none | all
element should span across [initial | inherit;
(continued)

217

APPENDIXB CSS SELECTOR REFERENCE

column-width Specifies the column width

columns A shorthand property for column-width column-width: 100px;
and column-count

cursor Specifies the mouse cursor to be cursor: pointer | help |
displayed when pointing over an wait | grab | n-resize;
element

D

display Specifies how a certain HTML element display: inline |
should be displayed block;

float Specifies whether an element should float float: none | left | right |
to the left, right, or not at all initial | inherit;
font A shorthand property for the font-style, font: 24px Roboto, sans-

font-variant, font-weight, font-size/line- serif;
height, and font-family properties

font-family Specifies the font family for text font-family: Helvetica;
font- Controls the usage of the kerning font-kerning: auto |
kerning information (how letters are spaced) normal | none;

font-size Specifies the font size of text. Use length font-size: small | medium
to specify font size, e.g., 12px | large | length [initial |
inherit;

(continued)

218

APPENDIXB CSS SELECTOR REFERENCE

font-style Specifies the font style for text font-style: normal | italic |
oblique I initial | inherit;

font-weight Specifies the weight of a font font-weight: 900;font-
weight: bold;

height Sets the height of an element height: 20px;

image- Specifies the type of image-rendering: auto | smooth | high-
rendering algorithm to use forimage quality | crisp-edges | pixelated | initial |
scaling inherit;

@import Allows you to import a style @import url (“...”);@import “...”;
sheet into another style
sheet

J

justify- Specifies the alignment between the items inside justify-content:
content a flexible container when the items do not use all ~ flex-start | flex-end |
available space center;

219

APPENDIXB CSS SELECTOR REFERENCE

K

@keyframes Specifies the animation code @keyframes move {
from {top: Opx;}
to {top: 120px;}
1

left Specifies the left position of a left: auto | 100px;
positioned element

letter-spacing Increases or decreases the space letter-spacing: 2px;
between characters in a text

line-break Specifies how/if to break lines line-break: auto | loose |
normal | strict | anywhere;

line-height Sets the line height line-height: length;

margin Sets all the margin properties in one margin: 5px;
declaration
margin-bottom Sets the bottom margin of an element margin-bottom:
5px;
margin-left Sets the left margin of an element margin-left: 5px;
margin-right Sets the right margin of an element margin-right: 5px;
margin-top Sets the top margin of an element margin-top: 5px;
(continued)

220

APPENDIXB CSS SELECTOR REFERENCE

max-height
max-width

@media

min-height

min-width

Sets the maximum height of an element max-height: 110px;

Sets the maximum width of an element max-width: 400px;

Sets the style rules for different media @media only

types/devices/sizes

screen and (max-
width: 600px) {
body {

}
}

Sets the minimum height of an element min-height: 100;

Sets the minimum width of an element min-width: 600px;

0

object-
position

opacity

order

outline

outline-color

Specifies the alignment of the
replaced element inside its box. Use
pos to specify the position

Sets the opacity level for an element.
0.0 is fully transparent; 1.0 is fully
opaque

Sets the order of the flexible item,
relative to the rest

A shorthand property for the outline-
width, outline-style, and outline-color
properties

Sets the color of an outline

object-position: pos | initial
| inherit;object-position: 5px
6px;

opacity: 0.5;

order: number | initial |
inherit;

outline: 10px dotted red;

outline-color: red:;

(continued)

221

APPENDIXB CSS SELECTOR REFERENCE

outline- Offsets an outline and draws it beyond outline-offset: 5px;
offset the border edge
outline-style Sets the style of an outline outline-style: none | hidden

| dotted | dashed | solid |
double | groove | ridge |
inset | outset;

outline- Sets the width of an outline outline-width; 5px;

width

overflow Specifies what happens if content overflow: visible | hidden |
overflows an element's box clip | scroll | auto | initial |

inherit;

overflow- Specifies whether the browser can overflow-wrap: normal |

wrap break lines with long words if they anywhere | break-word |
overflow beyond the container initial | inherit;

P

padding A shorthand property for all the padding: 10px;
padding properties

padding- Sets the bottom padding of an element padding-bottom: 10px;

bottom

padding-left Sets the left padding of an element padding-left: 10px;
padding-right Sets the right padding of an element padding-right: 10px;
padding-top Sets the top padding of an element padding-top: 10px;

position Specifies the type of positioning position: static | absolute
method used for an element | fixed | relative | sticky |
initial | inherit;

222

R

APPENDIXB CSS SELECTOR REFERENCE

resize Defines how an element is resizable resize: none | both | horizontal |
by the user vertical | initial | inherit;

right Specifies the right position of a right: 10px;
positioned element

row-gap Specifies the gap between the grid row-gap: 5px;

rows
scroll- Specifies whether to smoothly animate the scroll-behavior: auto |
behavior scroll position in a scrollable box, instead of a smooth | initial | inherit;
straight jump
tab-size Specifies the width of a tab tab-size: 10;
character
table-layout Defines the algorithm used to lay out table-layout: auto | fixed |
table cells, rows, and columns initial | inherit;
text-align Specifies the horizontal alignment text-align: left | right | center |
of text justify | initial | inherit;
text- Specifies the decoration added to text-decoration: overline |
decoration text line-through | underline;
(continued)

223

APPENDIXB CSS SELECTOR REFERENCE

text- Specifies the color of the text- text-decoration-color: red;
decoration- decoration
color

text-indent Specifies the indentation of the first text-indent: 40px;
line in a text-block

text-shadow Adds shadow to text text-shadow: 2px 2px
lightgrey;
top Specifies the top position of a top: 5px;

positioned element

U

user- Specifies whether the text of an element can user-select: auto | none |
select be selected text | all;

vV

vertical- Sets the vertical vertical-align: baseline | length | sub | super |
align alignment of an element top | text-top | middle | bottom | text-bottom |
initial | inherit;

visibility Specifies whether or not visibility: visible | hidden | collapse | initial |
an element is visible inherit;

224

W

APPENDIXB CSS SELECTOR REFERENCE

width

word-
spacing
writing-
mode

Sets the width of an elementwidth: 150px;

Increases or decreases the space between
words in a text

Specifies whether lines of text are laid out
horizontally or vertically

width: auto | value |
initial | inherit;

word-spacing: 3px;

writing-mode: vertical-
rl;

225

APPENDIX C

CSS Color Codes

You can specify colors using the following formats:

e A Color keyword such as “red,” “green,” “blue,”

” «u

“transparent,” “orange,” etc.

e Ahexvalue such as “#000000" “#00A500’,
“#FFFFFF’ etc.

e An RGB value such as “rgb(255, 255, 0)”

Color Name Hex Value RGB Value
aliceblue #FOF8FF rgh(240, 248, 255)
antiquewhite #FAEBD7 rgh(250, 235, 215)
aqua #OOFFFF rgh(0, 255, 255)
aquamarine #7FFFD4 rgh(127, 255, 212)
azure #FOFFFF rgh(1240, 255, 255)
beige #F5F5DC rgh(245, 245, 220)
bisque #FFEAC4 rgh(255, 228, 196)
black #000000 rgh(0, 0, 0)
blanchedalmond #FFEBCD rgh(255, 235, 205)
blue #0000FF rgh(0, 0, 255)
(continued)
© Kevin Wilson 2023 297

K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,
https://doi.org/10.1007/978-1-4842-9250-1

https://doi.org/10.1007/978-1-4842-9250-1#DOI

APPENDIXC CSS COLOR CODES

Color Name Hex Value RGB Value
blueviolet #8A2BE2 rgh(138, 43, 226)
brown #A52A2A rgh(165, 42, 42)
burlywood #DEB887 rgh(222, 184, 135)
cadetblue #5F9EAQ rgh(95, 158, 160)
chartreuse #7FFFO0 rgh(95, 158, 160)
chocolate #D2691E rgh(210, 105, 30)
coral #FF7F50 rgh(255, 127, 80)
cornflowerblue #6495ED rgh(100, 149, 237)
cornsilk #FFF8DC rgh(255, 248, 220)
crimson #DC143C rgh(220, 20, 60)
cyan #0OFFFF rgh(0, 255, 255)
darkblue #00008B rgh(0, 0, 139)
darkcyan #008B8B rgh(0, 139, 139)
darkgoldenrod #B8860B rgh(184, 134, 11)
darkgray #A9A9A9 rgh(169, 169, 169)
darkgreen #006400 rgh(0, 100, 0)
darkkhaki #BDB76B rgh(189, 183, 107)
darkmagenta #8B008B rgb(139, 0, 139)
darkolivegreen #556B2F rgh(85, 107, 47)
darkorange #FF8CO0 rgh(255, 140, 0)
darkorchid #9932CC rgh(153, 50, 204)
darkred #8B0000 rgb(139, 0, 0)
darksalmon #E9967A rgh(233, 150, 122)

228

(continued)

APPENDIXC CSS COLOR CODES

Color Name Hex Value RGB Value
darkseagreen #8FBC8F rgh(143, 188, 143)
darkslateblue #483D8B rgh(72, 61, 139)
darkslategray #2FAFAF rgh(47,79,79)
darkturquoise #00CED1 rgh(0, 206, 209)
darkviolet #9400D3 rgh(148, 0, 211)
deeppink #FF1493 rgh(255, 20, 147)
deepskyblue #00BFFF rgb(0, 191, 255)
dimgray #696969 rgb(0, 191, 255)
dodgerblue #1E90FF rgh(30, 144, 255)
firebrick #B22222 rgb(178, 34, 34)
floralwhite #FFFAFO rgb(255, 250, 240)
forestgreen #228B22 rgh(34, 139, 34)
fuchsia #FFOOFF rgb(255, 0, 255)
gainsbhoro #DCDCDC rgh(220, 220, 220)
ghostwhite #FBF8FF rgh(248, 248, 255)
gold #FFD700 rgb(255, 215, 0)
goldenrod #DAA520 rgh(218, 165, 32)
gray #808080 rgh(128, 128, 128)
green #008000 rgh(0, 128, 0)
greenyellow #ADFF2F rgh(173, 255, 47)
honeydew #FOFFFO rgh(240, 255, 240)
hotpink #FF69B4 rgb(255, 105, 180)
indianred #CD5C5C rgb(205, 92, 92)

(continued)

229

APPENDIXC CSS COLOR CODES

Color Name Hex Value RGB Value

indigo #4B0082 rgb(75, 0, 130)
ivory #FFFFFO rgh(255, 255, 240)
khaki #FOE68C rgb(240, 230, 140)
lavender #EGEGFA rgb(230, 230, 250)
lavenderblush #FFFOF5 rgh(255, 240, 245)
lawngreen #7CFC00 rgh(124, 252, 0)
lemonchiffon #FFFACD rgh(255, 250, 205)
lightblue #ADDSEG rgb(173, 216, 230)
lightcoral #F08080 rgh(240, 128, 128)
lightcyan #EOFFFF rgb(224, 255, 255)
lightgoldenrodyellow #FAFAD2 rgh(250, 250, 210)
lightgreen #90EE90 rgh(144, 238, 144)
lightgrey #D3D3D3 rgb(211, 211, 211)
lightpink #FFB6C1 rgb(255, 182, 193)
lightsalmon #FFAO7A rgh(255, 160, 122)
lightseagreen #20B2AA rgh(32, 178, 170)
lightskyblue #87CEFA rgb(135, 206, 250)
lightslategray #778899 rgh(119, 136, 153)
lightsteelblue #B0OC4DE rgb(176, 196, 222)
lightyellow #FFFFEO rgh(255, 255, 224)
lime #00FF00 rgb(0, 255, 0)
limegreen #32CD32 rgh(50, 205, 50)
linen #FAFOEG rgb(250, 240, 230)

230

(continued)

APPENDIXC CSS COLOR CODES

Color Name Hex Value RGB Value
magenta #FFOOFF rgh(255, 0, 255)
maroon #800000 rgh(128, 0, 0)
mediumaquamarine #66CDAA rgh(102, 205, 170)
mediumblue #0000CD rgh(0, 0, 205)
mediumorchid #BA55D3 rgh(186, 85, 211)
mediumpurple #9370DB rgh(147,112, 219)
mediumseagreen #3CB371 rgh(60, 179, 113)
mediumslateblue #7B68EE rgh(123, 104, 238)
mediumspringgreen #00FA9A rgh(0, 250, 154)
mediumturquoise #48D1CC rgh(72, 209, 204)
mediumvioletred #C71585 rgh(199, 21, 133)
midnightblue #191970 rgh(25, 25, 112)
mintcream #FS5FFFA rgh(245, 255, 250)
mistyrose #FFE4E1 rgh(255, 228, 225)
moccasin #FFE4B5 rgh(255, 228, 181)
navajowhite #FFDEAD rgh(255, 222, 173)
navy #000080 rgh(0, 0, 128)
navyblue #9FAFDF rgh(159, 175, 223)
oldlace #FDF5E6 rgh(253, 245, 230)
olive #808000 rgh(128, 128, 0)
olivedrab #6B8E23 rgh(107, 142, 35)
orange #FFAS00 rgh(255, 165, 0)
orangered #FF4500 rgh(255, 69, 0)

(continued)

231

APPENDIXC CSS COLOR CODES

Color Name Hex Value RGB Value

orchid #DA70D6 rgh(218, 112, 214)
palegoldenrod #EEEBAA rgh(238, 232, 170)
palegreen #98FB98 rgh(152, 251, 152)
paleturquoise #AFEEEE rgh(175, 238, 238)
palevioletred #DB7093 rgh(219, 112, 147)
papayawhip #FFEFD5 rgh(255, 239, 213)
peachpuff #FFDAB9 rgh(255, 218, 185)
peru #CD853F rgh(205, 133, 63)
pink #FFCOCB rgh(255, 192, 203)
plum #DDAODD rgh(221, 160, 221)
powderblue #BOEQE6 rgh(176, 224, 230)
purple #800080 rgh(128, 0, 128)
red #FF0000 rgh(255, 0, 0)
rosybrown #BC8F8F rgh(188, 143, 143)
royalblue #4169E1 rgh(65, 105, 225)
saddlebrown #8B4513 rgh(139, 69, 19)
salmon #FA8072 rgh(250, 128, 114)
sandybrown #FAB072 rgh(244, 164, 96)
seagreen #2E8B57 rgh(46, 139, 87)
seashell #FFFSEE rgh(255, 245, 238)
sienna #A0522D rgh(160, 82, 45)
silver #C0COCO rgh(192, 192, 192)
skyblue #87CEEB rgh(135, 206, 235)

232

(continued)

APPENDIXC CSS COLOR CODES

Color Name Hex Value RGB Value
slateblue #6A5ACD rgb(108, 90, 205)
slategray #708090 rgh(112, 128, 144)
snow #FFFAFA rgh(255, 250, 250)
springgreen #00FF7F rgh(0, 255, 127)
steelblue #4682B4 rgh(70, 130, 180)
tan #D2B48C rgh(210, 180, 140)
teal #008080 rgh(0, 128, 128)
thistle #D8BFD8 rgh(216, 191, 216)
tomato #FF6347 rgh(255, 99, 71)
turquoise #40E0DO rgh(64, 224, 208)
violet #EE82EE rgh(238, 130, 238)
wheat #F5DEB3 rgh(245, 222, 179)
white #FFFFFF rgh(255, 255, 255)
whitesmoke #F5F5F5 rgh(245, 245, 245)
yellow #FFFFOO rgh(255, 255, 0)
yellowgreen #9ACD32 rgh(139, 205, 50)

233

Index

A

Abyss Web Server, 9, 10, 13-15,

43, 44, 156

Adobe Dreamweaver IDE, 20
Anchor element, 34-37

B

Border radius, 129, 130, 154, 155
Box Model, 88, 90
Brackets, 19, 21, 22, 34, 123, 172

Browser window, 32, 33, 36, 44, 95,

102, 175

Buttons, 130

C

cursor changes, 130, 131
cursor property, 130
hover state, 130

radio buttons, 150

Cascading style sheets (CSS), 1,

7,8,75
absolute and relative, 87
attribute selector, 123
box model, 88
browser window, 124

© Kevin Wilson 2023
K. Wilson, The Absolute Beginner’s Guide to HTML and CSS,

https://doi.org/10.1007/978-1-4842-9250-1

class selectors, 80, 96
color codes, 87, 227
colors, 85

columns, 117
container, 91

element, 80

font and color, 84

font color and alignment, 85
grid, 105, 107, 115, 126
grouping selectors, 82
H1 tags, 83

hex value, 86

.highlight class, 81
HTML code, 75, 78, 80, 94
ID selectors, 81, 125
inline styles, 77
keyword, 85

layouts and sections, 90
rgb() function, 86
selector reference, 215
selectors, 79

sidebar, 106

style attribute, 76
styles, 79

symbol, 95

syntax, 78

text file and link, 76

235

https://doi.org/10.1007/978-1-4842-9250-1#DOI

INDEX

Cascading style sheets (CSS) (cont.)

universal selector, 82
web browser, 90

Closing tags, 36

.com, 4

Configuration wizard, 12

Content management

system (CMS)

definition, 181
HTML pages, 182
platforms, 181
websites, 181
WordPress, 181, 182

Cursor property, 130

D

Developers, 75, 182, 199
Directory structure, 5, 6
DNS server, 27, 29
Document root, 24
Dreamweaver, 19, 20

E

ellumitechacademy, 4
End user, 181

F

Flex attribute, 100
Flexbox, 91-104, 126
Fonts, 54, 55, 75, 87

Formatting elements, 41, 45

236

Forms, 147

add() function, 178
adding button, 176
addition, 148
attributes, 148, 149
creation, 152, 153
fields, 176
formatting, 155, 156
functionality, 156
input types, 148, 149
checkbox, 150
radio buttons, 150
select list, 151
text area, 149, 150
text field, 149
JavaScript function, 176
labels, 151
onclick event, 176
parselnt() function, 177
PHP script, 156
retrieving numbers, 177
script execution, 162-164
script tags, 177
span element, 176, 178
styling
border, 154
container, 155
CSS styles, 153
input boxes, 153, 154
padding, 155
property cursor, 155
submit button, 154
submit button, 152

value assign, HTML, 178, 179

G

getElementByld() method, 175, 177
GIMP, 141, 142

Gradient ID selector, 132
Gradients, 131-133
Grid-template-rows property, 108

H

Head elements, 39
Hosting, 4, 9, 16, 136, 156
HTML, 27
add list, 69, 70
attributes, 35
background image, 60-63
code file, 97
create table, 63, 64
directory, 4
document outline, 42
element reference, 203
elements, 32, 33, 39, 71, 88, 125
entities, 55
fonts, 54, 55
image
addition, 56-58
alignment, 59, 60
dimensions, 58
and documents, 66
links, 67, 68
menu link, 68
resize, 58
size, 57, 59
index.html, 44

INDEX

links, 65-68
page background color, 51-53
preserve formatting, 69
save, Abyss Web Server, 43, 44
Save As, Notepad, 43
search engines, 71
semantic elements, 70
table, web page, 64
tags, 34, 35, 72, 138
text color, 53, 54
text editor, 46
used characters, 56
HTML element structure
anchor element, 35-37
attributes, 35
closing tag, 34
image element, 37
start tag, 34
HTML page structure, 31
document type
declaration, 32
<body> element, 32, 33
<head> element, 32, 33
HTMLS5, 7, 32,70, 135
Hyperlinks, 1, 2, 28
HyperText Markup
Language (HTML)
CSS,7,8
development tools and code
editor, 19-22
hosting, 9-13
hyperlinks, 1, 2
index pages, 5, 6
lab demo, 23-28

237

INDEX

HyperText Markup Language
(HTML) (cont.)
URL, 3-5
wed server, 3
Hypertexts, 1-3

Image
background image, 60-63,
112,216
corners, 129
dimensions, 58-59, 140, 141
element, 37
source (src), 37
Image map, 142
coordinates, GIMP, 142
GIMP, 141, 142
hotspots, 140
image coordinates, 143, 144
name attribute, 140
resize image, 141
result, 145
Indexfile, 5, 6, 160, 161
Integrated development
environment (IDE), 19-22
IP address, 17, 24-29

J,K
JavaScript

blocks, 172
comments, 173, 174

238

development, 169
HTML, 174,175
identifiers, 172, 173
keywords, 173
script, 172
statement, 172
web pages, 169-171

L

Labels, 151
Linux operating system, 3

Media, 7, 123, 210, 221
Metadata, 33, 37-38
Meta viewport tag, 122
Mobile devices, 7
Multimedia
adding video, 135-139
copy, code, 138
Embed, 138
file extensions, 135
image map, 140-144
Vimeo Upload, 137
website, video, 139
YouTube Share Button, 137

N

Name attribute, 35, 140, 149
Notepad Code Editor, 23

O

Ordered list, 69, 70

P,Q

Page background color, 51-53

pagename.html, 16

parselnt() function, 177, 178

Personal web server, 9, 29,
42,44, 66

Port number, 26, 27

Python framework, 199

R

Responsive design, 112

S

Search engines, 37, 71
Second-level domain, 4
Semantic elements, 70, 71
Site manager, filezilla, 17
Socket, 26, 27
Subdirectory, 4
Submission method

get method, 164, 165

post method, 164-166

T

Text
bold Text, 47, 48, 51, 72
color, 41, 53-54

INDEX

effects, 127-128
formatting elements
bold text, 47, 48
heading, 46, 47
HTML Text Editor, 46
italic text, 48-51
paragraphs, 47
tags, 50, 51
title and body text, 45
italic text, 48-51
shadow property, 127, 128
Themes, 181, 182, 198

U

Unit Meaning, 87
Unordered list, 69
URL, 3-5, 65, 67, 68, 164, 165, 199

\'

Value attribute, 35

Video files, 135, 136
Video hosting service, 136
Videos, 135-139

VS Code, 19-22

W, X
Web design
laptop, 113
phone, 114
Web frameworks
back-end frameworks, 199

239

INDEX

Web frameworks (cont.)
definition, 199
front-end frameworks, 199
websites, 199, 200

Web pages saving
local machine, 15, 16
web host, 16-19

Web servers, 3, 5, 6, 25, 26, 28
Associated Extensions table, 160
console, 158
directory, 6
index files, 160, 161
index.php, 162
installation, 9-13
interpreters table, 159
license agreement, 157
PHP installation, 157
PHP script, 156
restarting, 162
scripting parameters, 159
setting, 160
software, 23
start menu, 13, 14

Website data, 181

WordPress
accessing, 198
administrator back end, 198
administrator information, 196
appearance tab, 198
Apply Configuration, 187, 188
back end, 182
database, 190, 191

240

database username, 190
downloading, 183
fields, 195
front end, 182, 183
language, 194
login, 196, 197
MySQL
command prompt, 190
installation, 183, 184
MySQL Command Line
Client, 188, 189
permission, 191
PHP, 183
privileges, 191
root password, 185, 186, 189
setup, 194, 195
Setup Type, 184
Type and Networking, 185
user, 190
username/password, 197
web browser, 193
web server, 192, 193
Windows Service, 186, 187
wp-admin dashboard, 197, 198
zip file, extraction, 191, 192
World Wide Web Consortium
(W3C), 75
World Wide Web (WWW), 1, 3-5

Y,Z

YouTube, 136, 137

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started
	Linking Pages Together
	Where Are Web Pages Stored?
	What Is a URL?
	Index Pages
	HTML5
	What Is CSS?
	Hosting
	Installing Our Web Server

	Starting the Web Server
	Saving Your Web Pages
	Local Machine
	Using a Web Host

	Development Tools and Code Editors
	Lab Demo
	Lab Exercises
	Summary

	Chapter 2: Introduction to HTML
	Structure of an HTML Page
	HTML Element Structure
	Metadata
	Lab Exercises
	Summary

	Chapter 3: Getting Started with HTML
	Setting Up
	Elements for Formatting Text
	Headings
	Paragraphs
	Bold Text
	Italic Text

	Page Background Color
	Text Color
	Fonts
	HTML Entities
	Adding Images
	Understanding Image Dimensions
	Image Alignment
	Background Image
	Adding Tables
	Adding Links
	Using Images As Links
	Preserve Formatting
	Adding Lists
	Unordered List
	Ordered List

	Structuring Your Web Page
	Lab Exercises
	Summary

	Untitled
	Chapter 4: Cascading Style Sheets
	External CSS Files
	CSS Syntax
	Element Type Selector
	Class Selector
	ID Selector
	Universal Selector
	Grouping Selectors

	Styling Text
	Specifying Colors
	Keyword
	Hex Value
	RGB Value

	Understanding Measurement Units
	Padding, Margins, and Borders
	Layouts
	Flexbox
	Putting Flexbox into Practice
	CSS Grid
	Putting CSS Grid into Practice
	Responsive Grid Layouts

	Lab Exercises
	Summary

	Chapter 5: Special Effects
	Text Effects
	Rounded Image Corners
	Buttons
	Gradients
	Lab Exercises
	Summary

	Chapter 6: Multimedia
	Adding Video
	Adding Audio
	Adding Image Maps
	Lab Exercises
	Summary

	Chapter 7: HTML Forms
	Adding Forms
	Input Types
	Text Fields
	Text Area
	Radio Buttons
	Checkbox
	Select List

	Labels
	Submit Button

	Building a Form
	Styling a Form
	Processing the Form Data
	Configure the Web Server to Execute Scripts

	Executing the Script
	Submission Method
	Get
	Post

	Lab Exercises
	Summary

	Untitled
	Chapter 8: Introduction to JavaScript
	JavaScript Syntax
	Statements
	Blocks
	Identifiers
	Keywords
	Comments

	First Program
	Lab Exercise
	Summary

	Chapter 9: Content Management Systems
	Set Up WordPress on Our Server
	Web Development Frameworks
	Summary

	Appendix A: HTML Element Reference
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	S
	T
	U
	V
	W

	Appendix B: CSS Selector Reference
	A
	B
	C
	D
	F
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Appendix C: CSS Color Codes
	Index
	Capture.PNG

